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Aggregation

Combine simple data into more complex data.

String
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Aggregation

Definition

Aggregation is a binary relation on classes. The pair (A, P) of
classes is in the aggregation relation if class A (aggregate) has an
attribute of type P (part).

The aggregation relation is also known as the has-a relation.
Instead of saying that (A, P) is in the aggregation relation, we
often simply say that A has-a P.

Stock has-a String.

Investment has-a Stock.
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UML Diagrams
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How to Copy an Object?

We will show three ways to copy an object:
@ create an alias,
@ create a shallow copy, and
@ create a deep copy.

The created copies are fundamentally different.
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Investment investment = Investment.getRandom() ;
Investment alias = investment;
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100 | main invocation
investment | 400
alias | 400

200 | String object
"HR.Z"

300 | Stock object
symbol | 200

400 | Investment object
stock | 300
quantity | 8
bookValue | 25.50
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Shallow Copy

Investment investment = Investment.getRandom() ;
Stock stock = investment.getStock();
int quantity = investment.getQty();
double bookValue = investment.getBookValue();
Investment shallowCopy =

new Investment(stock, quantity, bookValue);
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Deep Copy

Investment investment = Investment.getRandom() ;
Stock stock = investment.getStock();
String symbol = stock.getSymbol();
int quantity = investment.getQty();
double bookValue = investment.getBookValue();
Stock stockCopy = new Stock(symbol);
Investment deepCopy =
new Investment(stockCopy, quantity, bookValue);
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Deep Copy

100 | main invocation
investment | 400
deepCopy | 500

500 | Investment object
stock | 600
quantity | 8
bookValue | 25.50

600 | Stock object
symbol | 200
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Composition is a special type of aggregation. The aggregate A and
its part P form a composition if “A owns P", that is, each object
of type A has exclusive access to its attribute of type P.

The designer and the implementer of a class determine whether an
aggregation is a composition.

Java does not provide any special language constructs for
implementing compositions. The constructors, accessors and
mutators are implemented in a particular way (the details will be
covered in CSE1030).
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UML Diagrams

String 5 CreditCard I‘—ﬂEI
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Accessor

CreditCard card = new CreditCard(123456, "Jane Doe");
Date expiryDate = card.getExpiryDate();
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Accessor

100 | main invocation
card | 200
expiryDate | 700
200 | CreditCard object
number | 300
name | 400
issueDate | 500
expiryDate | 600
300 | String object

"123456"
400 | String object
"Jane Doe"
500 | Date object
now

600 | Date object
two year from now
700 | Date object
two years from now
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CreditCard card = new CreditCard(123456, "Jane Doe");
Date expiryDate = card.getExpiryDate();

final int YEAR = 113;

expiryDate.setYear (YEAR); // set year to 1900 + YEAR
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100 | main invocation

card | 200
expiryDate | 700
YEAR | 113

200 | CreditCard object
number | 300
name | 400

issueDate | 500
expiryDate | 600
300 | String object

"123456"
400 | String object
"Jane Doe"
500 | Date object
now

600 | Date object
two years from now
700 | Date object
one year ago

moodle.yorku.ca CSE 1020



moodle.yorku.ca

Collection

We distinguish between

@ static allocation: the maximum number of elements
(capacity) is fixed when the collection is created

@ dynamic allocation: the number of elements is unbounded
and
@ list: duplicates are allowed and the elements are ordered

@ set: duplicates are disallowed and the elements are not ordered
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Traversals

for each element of the collection

We distinguish two types of traversals:
@ indexed traversals

@ lterator-based traversals
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Indexed Traversals

collection = ...

for (int i = 0; i < collection.size(); i++) {
element = collection.get(i);
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Iterator-Based Traversals

CollectionOfTs
iterator() : Iterator<T>

\Vi
Iterator<E>
hasNext() : boolean

next() : E
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Iterator-Based Traversals

collection = ...
Iterator<...> iterator = collection.iterator();

while (iterator.hasNext()) {
element = iterator.next();
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Iterator-Based Traversals

collection = ...
Iterator<...> iterator = collection.iterator();

while (iterator.hasNext()) {
element = iterator.next();

The above can be abbreviated using the advanced for loop:

collection = ...

for (... element : collection) {
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