
Review
Introduction to Computer Science I

CSE 1020

moodle.yorku.ca

moodle.yorku.ca CSE 1020

moodle.yorku.ca
moodle.yorku.ca


Aggregation

Combine simple data into more complex data.

Date String

Date String

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Aggregation

Definition

Aggregation is a binary relation on classes. The pair (A, P) of
classes is in the aggregation relation if class A (aggregate) has an
attribute of type P (part).

The aggregation relation is also known as the has-a relation.
Instead of saying that (A, P) is in the aggregation relation, we
often simply say that A has-a P.

Example

Stock has-a String.

Investment has-a Stock.

moodle.yorku.ca CSE 1020

moodle.yorku.ca


UML Diagrams

Investment Stock String
1 1

moodle.yorku.ca CSE 1020

moodle.yorku.ca


How to Copy an Object?

We will show three ways to copy an object:

create an alias,

create a shallow copy, and

create a deep copy.

The created copies are fundamentally different.

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Alias

Investment investment = Investment.getRandom();
Investment alias = investment;

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Alias

100 main invocation
investment 400

alias 400

200 String object
”HR.Z”

300 Stock object
symbol 200

400 Investment object
stock 300

quantity 8
bookValue 25.50

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Shallow Copy

Investment investment = Investment.getRandom();
Stock stock = investment.getStock();
int quantity = investment.getQty();
double bookValue = investment.getBookValue();
Investment shallowCopy =

new Investment(stock, quantity, bookValue);

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Shallow Copy

100 main invocation
investment 400

stock 300
quantity 8
bookValue 25.50

shallowCopy 500
200 String object

”HR.Z”
300 Stock object

symbol 200
400 Investment object

stock 300
quantity 8
bookValue 25.50

500 Investment object
stock 300

quantity 8
bookValue 25.50

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Deep Copy

Investment investment = Investment.getRandom();
Stock stock = investment.getStock();
String symbol = stock.getSymbol();
int quantity = investment.getQty();
double bookValue = investment.getBookValue();
Stock stockCopy = new Stock(symbol);
Investment deepCopy =

new Investment(stockCopy, quantity, bookValue);

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Deep Copy

100 main invocation
investment 400

deepCopy 500

500 Investment object
stock 600

quantity 8
bookValue 25.50

600 Stock object
symbol 200

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Composition

Composition is a special type of aggregation. The aggregate A and
its part P form a composition if “A owns P”, that is, each object
of type A has exclusive access to its attribute of type P.

The designer and the implementer of a class determine whether an
aggregation is a composition.

Java does not provide any special language constructs for
implementing compositions. The constructors, accessors and
mutators are implemented in a particular way (the details will be
covered in CSE1030).

moodle.yorku.ca CSE 1020

moodle.yorku.ca


UML Diagrams

CreditCardString Date
2

2

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Accessor

CreditCard card = new CreditCard(123456, "Jane Doe");
Date expiryDate = card.getExpiryDate();

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Accessor

100 main invocation
card 200

expiryDate 700
200 CreditCard object

number 300
name 400

issueDate 500
expiryDate 600

300 String object
"123456"

400 String object
"Jane Doe"

500 Date object
now

600 Date object
two year from now

700 Date object
two years from now

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Mutator

CreditCard card = new CreditCard(123456, "Jane Doe");
Date expiryDate = card.getExpiryDate();
final int YEAR = 113;
expiryDate.setYear(YEAR); // set year to 1900 + YEAR

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Mutator

100 main invocation
card 200

expiryDate 700
YEAR 113

200 CreditCard object
number 300
name 400

issueDate 500
expiryDate 600

300 String object
"123456"

400 String object
"Jane Doe"

500 Date object
now

600 Date object
two years from now

700 Date object
one year ago

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Collection

We distinguish between

static allocation: the maximum number of elements
(capacity) is fixed when the collection is created

dynamic allocation: the number of elements is unbounded

and

list: duplicates are allowed and the elements are ordered

set: duplicates are disallowed and the elements are not ordered

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Traversals

for each element of the collection
...

We distinguish two types of traversals:

indexed traversals

Iterator-based traversals

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Indexed Traversals

... collection = ...

...
for (int i = 0; i < collection.size(); i++) {

... element = collection.get(i);

...
}

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Iterator-Based Traversals

CollectionOfTs
iterator() : Iterator<T>

Iterator<E>

hasNext() : boolean
next() : E

T is a type (class name) and E is a type parameter (we come back
to this in Section 9.3.3).

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Iterator-Based Traversals

... collection = ...

...
Iterator<...> iterator = collection.iterator();
while (iterator.hasNext()) {

... element = iterator.next();

...
}

The above can be abbreviated using the advanced for loop:

... collection = ...

...
for (... element : collection) {

...
}

moodle.yorku.ca CSE 1020

moodle.yorku.ca


Iterator-Based Traversals

... collection = ...

...
Iterator<...> iterator = collection.iterator();
while (iterator.hasNext()) {

... element = iterator.next();

...
}

The above can be abbreviated using the advanced for loop:

... collection = ...

...
for (... element : collection) {

...
}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

