Review

Introduction to Computer Science |
CSE 1020

moodle.yorku.ca

moodle.yorku.ca CSE 1020


moodle.yorku.ca
moodle.yorku.ca

Aggregation

Combine simple data into more complex data.

String

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Aggregation

Definition

Aggregation is a binary relation on classes. The pair (A, P) of
classes is in the aggregation relation if class A (aggregate) has an
attribute of type P (part).

The aggregation relation is also known as the has-a relation.
Instead of saying that (A, P) is in the aggregation relation, we
often simply say that A has-a P.

Stock has-a String.

Investment has-a Stock.

moodle.yorku.ca CSE 1020


moodle.yorku.ca

UML Diagrams

moodle.yorku.ca CSE 1020


moodle.yorku.ca

How to Copy an Object?

We will show three ways to copy an object:
@ create an alias,
@ create a shallow copy, and
@ create a deep copy.

The created copies are fundamentally different.

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Investment investment = Investment.getRandom() ;
Investment alias = investment;

moodle.yorku.ca CSE 1020


moodle.yorku.ca

100 | main invocation
investment | 400
alias | 400

200 | String object
"HR.Z"

300 | Stock object
symbol | 200

400 | Investment object
stock | 300
quantity | 8
bookValue | 25.50

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Shallow Copy

Investment investment = Investment.getRandom() ;
Stock stock = investment.getStock();
int quantity = investment.getQty();
double bookValue = investment.getBookValue();
Investment shallowCopy =

new Investment(stock, quantity, bookValue);

moodle.yorku.ca CSE 1020


moodle.yorku.ca

100
investment
stock
quantity
bookValue

shallowCopy
200

300
symbol
400

stock
quantity
bookValue
500

stock
quantity
bookValue

Shallow Copy

main invocation

400
300

8
25.50
500

String object

"HR.Z"

Stock object

200

Investment object

300
8
25.50

Investment object

300
8
25.50

moodle.yorku.ca CSE 1020



moodle.yorku.ca

Deep Copy

Investment investment = Investment.getRandom() ;
Stock stock = investment.getStock();
String symbol = stock.getSymbol();
int quantity = investment.getQty();
double bookValue = investment.getBookValue();
Stock stockCopy = new Stock(symbol);
Investment deepCopy =
new Investment(stockCopy, quantity, bookValue);

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Deep Copy

100 | main invocation
investment | 400
deepCopy | 500

500 | Investment object
stock | 600
quantity | 8
bookValue | 25.50

600 | Stock object
symbol | 200

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Composition is a special type of aggregation. The aggregate A and
its part P form a composition if “A owns P", that is, each object
of type A has exclusive access to its attribute of type P.

The designer and the implementer of a class determine whether an
aggregation is a composition.

Java does not provide any special language constructs for
implementing compositions. The constructors, accessors and
mutators are implemented in a particular way (the details will be
covered in CSE1030).

moodle.yorku.ca CSE 1020


moodle.yorku.ca

UML Diagrams

String 5 CreditCard I‘—ﬂEI

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Accessor

CreditCard card = new CreditCard(123456, "Jane Doe");
Date expiryDate = card.getExpiryDate();

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Accessor

100 | main invocation
card | 200
expiryDate | 700
200 | CreditCard object
number | 300
name | 400
issueDate | 500
expiryDate | 600
300 | String object

"123456"
400 | String object
"Jane Doe"
500 | Date object
now

600 | Date object
two year from now
700 | Date object
two years from now

moodle.yorku.ca CSE 1020


moodle.yorku.ca

CreditCard card = new CreditCard(123456, "Jane Doe");
Date expiryDate = card.getExpiryDate();

final int YEAR = 113;

expiryDate.setYear (YEAR); // set year to 1900 + YEAR

moodle.yorku.ca CSE 1020


moodle.yorku.ca

100 | main invocation

card | 200
expiryDate | 700
YEAR | 113

200 | CreditCard object
number | 300
name | 400

issueDate | 500
expiryDate | 600
300 | String object

"123456"
400 | String object
"Jane Doe"
500 | Date object
now

600 | Date object
two years from now
700 | Date object
one year ago

moodle.yorku.ca CSE 1020



moodle.yorku.ca

Collection

We distinguish between

@ static allocation: the maximum number of elements
(capacity) is fixed when the collection is created

@ dynamic allocation: the number of elements is unbounded
and
@ list: duplicates are allowed and the elements are ordered

@ set: duplicates are disallowed and the elements are not ordered

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Traversals

for each element of the collection

We distinguish two types of traversals:
@ indexed traversals

@ lterator-based traversals

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Indexed Traversals

collection = ...

for (int i = 0; i < collection.size(); i++) {
element = collection.get(i);

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Iterator-Based Traversals

CollectionOfTs
iterator() : Iterator<T>

\Vi
Iterator<E>
hasNext() : boolean

next() : E

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Iterator-Based Traversals

collection = ...
Iterator<...> iterator = collection.iterator();

while (iterator.hasNext()) {
element = iterator.next();

moodle.yorku.ca CSE 1020


moodle.yorku.ca

Iterator-Based Traversals

collection = ...
Iterator<...> iterator = collection.iterator();

while (iterator.hasNext()) {
element = iterator.next();

The above can be abbreviated using the advanced for loop:

collection = ...

for (... element : collection) {

moodle.yorku.ca CSE 1020


moodle.yorku.ca

