
Review
Introduction to Computer Science I

CSE 1020

moodle.yorku.ca

moodle.yorku.ca CSE 1020

moodle.yorku.ca
moodle.yorku.ca

equals versus ==

Question

What is the state of an object?

Answer

The state of an object consists of the non-static attributes of the
class and their values.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

What is the state of an object?

Answer

The state of an object consists of the non-static attributes of the
class and their values.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

An object has an identity. This identity is unique. That is, two
different objects have different identities. In more concrete terms,
how do we think of an object’s identity?

Answer

The address in memory where the object is stored.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

An object has an identity. This identity is unique. That is, two
different objects have different identities. In more concrete terms,
how do we think of an object’s identity?

Answer

The address in memory where the object is stored.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

When are two objects references the same?

What do we mean by the same?

the same state

Fraction sum = ...
Fraction one = ...
boolean same = sum.equals(one);

the same identity

Fraction sum = ...
Fraction one = ...
boolean identical = (sum == one);

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = new Fraction(2, 4);

What does f.equals(g) return?

Answer

true

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = new Fraction(2, 4);

What does f.equals(g) return?

Answer

true

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = new Fraction(2, 4);

What does f == g return?

Answer

false

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = new Fraction(2, 4);

What does f == g return?

Answer

false

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = f;

What does f.equals(g) return?

Answer

true

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = f;

What does f.equals(g) return?

Answer

true

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = f;

What does f == g return?

Answer

true

moodle.yorku.ca CSE 1020

moodle.yorku.ca

equals versus ==

Question

Fraction f = new Fraction(1, 2);
Fraction g = f;

What does f == g return?

Answer

true

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Regular expressions

A regular expression allows us to express a pattern.

A detailed description of patterns can be found in the API of the
Pattern class, which is part of the java.util.regex package.

moodle.yorku.ca CSE 1020

http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.html
moodle.yorku.ca

Regular expressions

The class String contains the following methods.

public boolean matches(String regex)

tests whether this string matches the given regular expression.

public String replaceAll(String regex, String
replacement)

replaces each substring of this string that matches the given
regular expression with the given replacement.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Regular expressions

Question

Which regular expression captures all 416 phone numbers?

Answer

"416-\\d{3}-\\d{4}"

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Regular expressions

Question

Which regular expression captures all 416 phone numbers?

Answer

"416-\\d{3}-\\d{4}"

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Regular expressions

output.print("Enter a 416 phone number: ");
String number = input.next();
String pattern = "416-\\d{3}-\\d{4}";
if (!number.matches(pattern)) {

output.println("Not a 416 phone number!");
}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Regular expressions

File file = new File(name);
Scanner fileInput = new Scanner(file);
final String NUMBER = "\\d{16}";
final String MASK = "****************";
while (fileInput.hasNextLine()) {

String line = fileInput.nextLine();
line = line.replaceAll(NUMBER, MASK);
output.println(line);

}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

N

Write an app named Test4B that does the following.

Prompt the user by printing

Enter an integer >= 4:

The integer should be entered on the same line. You may
assume that the user always enters an integer.

Read the integer entered by the user.

As long as the user enters an integer smaller than 4, reprompt
the user by printing

Enter an integer >= 4:

again and reading the integer entered by the user.

Print an N of height h, where h is the integer greater than or
equal to 4 entered by the user (see sample run on next slide).

moodle.yorku.ca CSE 1020

moodle.yorku.ca

N

Here is a sample run (where the user has entered -1, 0, 3 and 4)

Enter an integer >= 4: -1
Enter an integer >= 4: 0
Enter an integer >= 4: 3
Enter an integer >= 4: 4
* *
** *
* **
* *

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Z

Write an app named Test4D that does the following.

Prompt the user by printing

Enter an integer >= 4:

The integer should be entered on the same line. You may
assume that the user always enters an integer.

Read the integer entered by the user.

As long as the user enters an integer smaller than 4, reprompt
the user by printing

Enter an integer >= 4:

again and reading the integer entered by the user.

Print an Z of height h, where h is the integer greater than or
equal to 4 entered by the user (see sample run on next slide).

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Z

Here is a sample run (where the user has entered -1, 0, 3 and 4)

Enter an integer >= 4: -1
Enter an integer >= 4: 0
Enter an integer >= 4: 3
Enter an integer >= 4: 4
++++

+
+

++++

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Medal standing

Exercise

Make the app more robust by trying to correct typos. In particular,
try to correct the situation where the user did not type one of the
characters. For example, Canaa, Canad, etc should all be
acceptable.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Eclipse’s debugger

Window → Open Perspective → Debug

Determine the point in the code that you want to inspect

Double click that point in the editor’s marker bar

Run → Debug As → Java Application

On the Debug view’s toolbar, click the Step Into button

moodle.yorku.ca CSE 1020

moodle.yorku.ca

