
Binary search

int index = Collections.binarySearch(list, element);

Precondition: the list must be sorted.

If the element is contained in the list then the method returns
the index at which the element can be found.

If the element is not in the list then the method returns −1.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

↓
1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

↓
1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

↓
1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

↓
1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

↓
1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

↓
1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

final int ELEMENT = 11;
int index = Collections.binarySearch(list, ELEMENT);

↓
1 3 6 10 11 14 18 18 21 24 25 28 30 33 34

index gets assigned the value 4.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Question

Consider

int index = Collections.binarySearch(list, ELEMENT);

Given that the list contains n elements, in the worst case, how
many comparisons does the invocation of binarySearch make?

Answer

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c

1 2 2 3 3 3 3 4

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Question

Consider

int index = Collections.binarySearch(list, ELEMENT);

Given that the list contains n elements, in the worst case, how
many comparisons does the invocation of binarySearch make?

Answer

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c

1 2 2 3 3 3 3 4

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Question

Consider

int index = Collections.binarySearch(list, ELEMENT);

Given that the list contains n elements, in the worst case, how
many comparisons does the invocation of binarySearch make?

Answer

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1

2 2 3 3 3 3 4

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Question

Consider

int index = Collections.binarySearch(list, ELEMENT);

Given that the list contains n elements, in the worst case, how
many comparisons does the invocation of binarySearch make?

Answer

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2

2 3 3 3 3 4

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Question

Consider

int index = Collections.binarySearch(list, ELEMENT);

Given that the list contains n elements, in the worst case, how
many comparisons does the invocation of binarySearch make?

Answer

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2

3 3 3 3 4

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Question

Consider

int index = Collections.binarySearch(list, ELEMENT);

Given that the list contains n elements, in the worst case, how
many comparisons does the invocation of binarySearch make?

Answer

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3

3 3 3 4

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Question

Consider

int index = Collections.binarySearch(list, ELEMENT);

Given that the list contains n elements, in the worst case, how
many comparisons does the invocation of binarySearch make?

Answer

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4

2c−1 1 2 2 4 4 4 4 8

2c−1 ≤ n
log2(2c−1) ≤ log2(n)
c − 1 ≤ log2(n)
c ≤ log2(n) + 1
O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4
2c−1

1 2 2 4 4 4 4 8

2c−1 ≤ n
log2(2c−1) ≤ log2(n)
c − 1 ≤ log2(n)
c ≤ log2(n) + 1
O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4
2c−1 1 2 2 4 4 4 4 8

2c−1 ≤ n
log2(2c−1) ≤ log2(n)
c − 1 ≤ log2(n)
c ≤ log2(n) + 1
O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4
2c−1 1 2 2 4 4 4 4 8

2c−1 ≤ n

log2(2c−1) ≤ log2(n)
c − 1 ≤ log2(n)
c ≤ log2(n) + 1
O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4
2c−1 1 2 2 4 4 4 4 8

2c−1 ≤ n
log2(2c−1) ≤ log2(n)

c − 1 ≤ log2(n)
c ≤ log2(n) + 1
O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4
2c−1 1 2 2 4 4 4 4 8

2c−1 ≤ n
log2(2c−1) ≤ log2(n)
c − 1 ≤ log2(n)

c ≤ log2(n) + 1
O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4
2c−1 1 2 2 4 4 4 4 8

2c−1 ≤ n
log2(2c−1) ≤ log2(n)
c − 1 ≤ log2(n)
c ≤ log2(n) + 1

O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Binary search

Answer continued

Let n be the number of elements of the list and c the number of
comparisons needed in the worst case.

n 1 2 3 4 5 6 7 8

c 1 2 2 3 3 3 3 4
2c−1 1 2 2 4 4 4 4 8

2c−1 ≤ n
log2(2c−1) ≤ log2(n)
c − 1 ≤ log2(n)
c ≤ log2(n) + 1
O(log2(n)) comparisons

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Sorting

Fact

Sorting a list of n elements needs O(n log(n)) comparisons.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Temperature app

The temperature app

randomly selects a city in Ontario,

reads a corresponding URL, and

extracts the current temperature.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Temperature app

For each city, we need a corresponding URL. These can be stored
in a file.

on-122_metric_e.html Alexandria
on-1_metric_e.html Algonquin Park (Brent)
on-29_metric_e.html Algonquin Park (Lake of Two Rivers)
on-114_metric_e.html Alliston
on-30_metric_e.html Apsley
on-111_metric_e.html Armstrong
on-148_metric_e.html Atikokan
on-164_metric_e.html Attawapiskat
...

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Temperature app

Question

What is the most appropriate collection to store the cities and
their URLs? A list, a set or a map?

Answer

A map.

Question

What are the types of the keys and values of the map?

Answer

String and URL.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Temperature app

Question

What is the most appropriate collection to store the cities and
their URLs? A list, a set or a map?

Answer

A map.

Question

What are the types of the keys and values of the map?

Answer

String and URL.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Temperature app

Question

What is the most appropriate collection to store the cities and
their URLs? A list, a set or a map?

Answer

A map.

Question

What are the types of the keys and values of the map?

Answer

String and URL.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Temperature app

Question

What is the most appropriate collection to store the cities and
their URLs? A list, a set or a map?

Answer

A map.

Question

What are the types of the keys and values of the map?

Answer

String and URL.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Object Serialization

Rather than reading a string representation of an object from a file
and creating the object, we can also read the object from a file
directly.

ObjectInputStream objectInput =
new ObjectInputStream(

new FileInputStream("cities.dat"));
Map<String, URL> map =

(Map) objectInput.readObject();
objectInput.close();

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Object Serialization

Rather than writing a string representation of an object to a file,
we can also save the object to a file directly.

ObjectOutputStream objectOutput =
new ObjectOutputStream(

new FileOutputStream("cities.dat"));
objectOutput.writeObject(map);
objectOutput.close();

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Object Serialization

Question

Which objects can be serialized?

Answer

Those objects that are an instance of a class that implements the
interface Serializable.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Object Serialization

Question

Which objects can be serialized?

Answer

Those objects that are an instance of a class that implements the
interface Serializable.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exception Handling
CSE 1020

moodle.yorku.ca

moodle.yorku.ca CSE 1020

moodle.yorku.ca
moodle.yorku.ca

Sources of Crashes

The user

Enter your choice (1−5): a

The client

List<Integer> list = ...
for (int i = 0; i <= list. size (); i++) {

output.println(list .get(i));
}
The implementer

import com.cheapbutquestionable.Integers;
...
int value = Integer.parseInt(input.nextInt ());

The runtime environment

List<String> list = ...
while (true) {

list .add(new String(”Hello”));
} moodle.yorku.ca CSE 1020

moodle.yorku.ca

API

Which exceptions a method may throw are specified in the API.

E get(int index)
Returns the element at the specified position in this list.
Parameters:

index – index of the element to return
Returns:

the element at the specified position in this list
Throws:

IndexOutOfBoundsException – if the index is out of
range (index < 0 || index >= size())

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Preconditions versus Exceptions

Question

Why do we need exceptions? Can’t we prevent crashes by
introducing appropriate preconditions?

Answer

Introducing an appropriate precondition is not always practical and
in some cases impossible.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Preconditions versus Exceptions

Question

Why do we need exceptions? Can’t we prevent crashes by
introducing appropriate preconditions?

Answer

Introducing an appropriate precondition is not always practical and
in some cases impossible.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Preconditions versus Exceptions

The method Double.valueOf(String) throws a
NumberFormatException if the argument is not a parsable number.

If this exception were replaced with a precondition, the client
would have to check that the argument is a parsable number.
Although this can be done using a regular expression, as shown in
the API of the method Double.valueOf(String), using exception
handling is much easier.

moodle.yorku.ca CSE 1020

http://docs.oracle.com/javase/7/docs/api/java/lang/Double.html
moodle.yorku.ca

Preconditions versus Exceptions

Each constructor throws an OutOfMemoryError when the Java
Virtual Machine cannot allocate an object because it is out of
memory, and no more memory could be made available by the
garbage collector.

If this error were replaced with a precondition, the client would
have to check if there would be sufficient memory before creating
each object, which is obviously extremely tedious (if at all
possible).

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How to Handle Exceptions

Step 1

Place a try block around the statement(s) that may throw the
exception.

try {
...

}

Step 2

Place a catch block right after the try block.

catch (... Exception e) {
...

}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

Compiling

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);

gives rise to the error

Client . java :13: unreported exception java.io .
FileNotFoundException; must be caught or declared
to be thrown

PrintStream fileOutput = new PrintStream(file);
ˆ

1 error

Why?

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

Answer

Because the constructor PrintStream(File) throws a
FileNotFoundException if the file object does not denote an
existing, writable regular file and a new regular file of that name
cannot be created, or if some other error occurs while opening or
creating the file (see API).

Question

How does a client fix a “must be caught or declared to be thrown”
error?

Answer

Catch the exception. (An implementer may also decide the declare
the exception to be thrown.)

moodle.yorku.ca CSE 1020

http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html
moodle.yorku.ca

Exceptions

Answer

Because the constructor PrintStream(File) throws a
FileNotFoundException if the file object does not denote an
existing, writable regular file and a new regular file of that name
cannot be created, or if some other error occurs while opening or
creating the file (see API).

Question

How does a client fix a “must be caught or declared to be thrown”
error?

Answer

Catch the exception. (An implementer may also decide the declare
the exception to be thrown.)

moodle.yorku.ca CSE 1020

http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html
moodle.yorku.ca

Exceptions

Answer

Because the constructor PrintStream(File) throws a
FileNotFoundException if the file object does not denote an
existing, writable regular file and a new regular file of that name
cannot be created, or if some other error occurs while opening or
creating the file (see API).

Question

How does a client fix a “must be caught or declared to be thrown”
error?

Answer

Catch the exception. (An implementer may also decide the declare
the exception to be thrown.)

moodle.yorku.ca CSE 1020

http://docs.oracle.com/javase/7/docs/api/java/io/PrintStream.html
moodle.yorku.ca

How to Catch Exceptions?

import java.io .FileNotFoundException;
...
try{

File file = new File(”test.txt”);
PrintStream fileOutput = new PrintStream(file);

}
catch (FileNotFoundException e){

output.println(”Failed to write to file : ”
+ e.getMessage())

}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

try{
output.println(args [0]);

}
catch (IndexOutOfBoundsException e){

output.println(e.getMessage());
}
catch (ArrayIndexOutOfBoundsException e){

e.printStackTrace();
}
gives rise to the compile-time error

Client . java :19: exception java.lang.
ArrayIndexOutOfBoundsException has already been
caught

catch (ArrayIndexOutOfBoundsException e)
ˆ

1 error

Why? moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

An ArrayIndexOutOfBoundsException is-an
IndexOutOfBoundsException.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

try{
output.println(args [0]);

}
catch (IndexOutOfBoundsException e){

output.println(e.getMessage());
}
catch (ArrayIndexOutOfBoundsException e){

e.printStackTrace();
}

The second catch block is redundant, because an
ArrayIndexOutOfBoundsException is-an
IndexOutOfBoundsException.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Inheritance Hierarchy

Object
equals(Object) : boolean
toString() : String

Throwable
getMessage() : String
printStackTrace()

Exception

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

Question

May the method charAt(int) of the class String throw an
exception?

Answer

Yes.

Question

Which type of exception?

Answer

An IndexOutOfBoundsException.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

String word = ...;
output.println(word.charAt(2));

Question

Why does the above snippet not give rise to a “must be caught or
declared to be thrown” error?

Answer

The “must be caught or declared to be thrown” rule is only
applicable to checked exceptions and an
IndexOutOfBoundsException is not checked.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

String word = ...;
output.println(word.charAt(2));

Question

Why does the above snippet not give rise to a “must be caught or
declared to be thrown” error?

Answer

The “must be caught or declared to be thrown” rule is only
applicable to checked exceptions and an
IndexOutOfBoundsException is not checked.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is NullPointerException checked?

Answer

No.

Question

Is InvalidPropertiesFormatException checked?

Answer

Yes.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

What are Checked Exceptions?

Definition

An exception is checked if

it is Exception or any of its subclasses, and

it is not RuntimeException or any of its subclasses.

Question

Is Exception checked?

Answer

Yes.

Question

Is RuntimeException checked?

Answer

No.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Inheritance Hierarchy

Object

Throwable

Exception

RuntimeException

Error

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the client.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the client.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the client.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Errors

Question

Why are Errors exempt from the “must be caught or declared to
be thrown” rule?

Answer

Errors represent conditions that are so abnormal the reliability of
the whole environment is suspect and, hence, the code in the catch
block may not run properly either.

Question

Why are RuntimeExceptions exempt from the “must be caught
or declared to be thrown” rule?

Answer

RuntimeExceptions represent conditions that can be validated by
the client.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

To do

Study Section 11.1–11.3 of the textbook.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

