
Unit Testing with JUnit
CSE 1020

moodle.yorku.ca

moodle.yorku.ca CSE 1020

moodle.yorku.ca
moodle.yorku.ca

Unit testing

A unit test is designed to test a single unit of code, for example, a
method.

Such a test should be automated as much as possible; ideally, it
should require no human interaction in order to run, should assess
its own results, and notify the programmer only when it fails.

A class that contains unit tests is known as a test case.

The code to be tested is known as the unit under test.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

JUnit

JUnit is a Java unit testing framework written by Kent Beck and
Erich Gamma.

JUnit is available at www.junit.org.

moodle.yorku.ca CSE 1020

www.junit.org
moodle.yorku.ca

Kent Beck

Kent Beck is an American software
engineer and the creator of the Ex-
treme Programming and Test Driven
Development software development.
He works at Facebook.

source: Three Rivers Institute

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Erich Gamma

Erich Gamma is a Swiss computer
scientist and member of the “Gang
of Four” who wrote the influential
software engineering textbook “De-
sign Patterns: Elements of Reusable
Object-Oriented Software.” He works
at Microsoft.

source: Pearson

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Java annotations

Annotations provide data about code that is not part of the code
itself. Therefore, it is also called metadata.

In its simplest form, an annotation looks like

@Deprecated

(The annotation type Deprecated is part of java.lang and,
therefore, need not be imported.)

An annotation can include elements and their values:

@Test(timeout=1000)

(The annotation type Time is part of org.junit and, therefore,
needs to be imported.)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

A test case

import org.junit.Assert;
import org.junit.Test;

public class ... {
@Test
public void ...() {

...
}

@Test
public void ...() {

...
}

...
}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Names of test methods

It is good practice to use descriptive names for the test methods.
This makes tests more readable when they are looked at later.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Assertions in test methods

Each test method should contain (at least) one assertion: an
invocation of a method of the Assert class of the org.unit
package.

Do not confuse these assertions with Java’s assert statement.

moodle.yorku.ca CSE 1020

http://junit.sourceforge.net/javadoc/org/junit/Assert.html
moodle.yorku.ca

Methods of the Assert class

assertEquals(long, long)

assert that the two are the same.

assertEquals(String, long, long)

assert that the two are the same; if not, the message is used.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Methods of the Assert class

assertEquals(double, double, double)
assertEquals(String, double, double, double)

The method invocation

Assert.assertEquals(expectedValue, actualValue, delta)

asserts
|expectedValue− actualValue| < delta

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Methods of the Assert class

assertEquals(Object, Object)
assertEquals(String, Object, Object)

asserts that the objects are equal according to the equals method.

assertSame(Object, Object)
assertSame(String, Object, Object)

asserts that the objects are equal according to the == operator.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Methods of the Assert class

assertTrue(boolean)
assertTrue(String, boolean)

asserts that the condition is true.

assertFalse(boolean)
assertFalse(String, boolean)

asserts that the condition is false.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Methods of the Assert class

assertNull(Object)
assertNull(String, Object)

asserts that the object is null.

assertNotNull(Object)
assertNotNull(String, Object)

asserts that the object is not null.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Timeout

Cause a test to fail if it takes longer than a specified time in
milliseconds:

@Test(timeout=1000)
public void ...() {

...
}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Exceptions

Cause a test to fail if a specified exception is not thrown:

@Test(expected=NumberFormatException.class)
public void ...() {

...
}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Body of unit test method

1 Create some objects.

2 Invoke methods on them.

3 Check the results using a method of the Assert class.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Test case

For each method and constructor (from simplest to most complex)

1 Study its API.

2 Create unit tests.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Writing a test suite

A test suite comprises one or more tests, grouping them so that
they can be run together.

Create a test suite using the @RunWith and
@Suite.SuiteClasses annotations. Both annotations are part of
the packages org.junit.runner and org.junit.runners and,
hence, need to be imported.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Writing a test suite

import org.junit.runner.RunWith;
import org.junit.runners.Suite;

@RunWith(Suite.class)
@Suite.SuiteClasses({....class,class})
public class ... { }

moodle.yorku.ca CSE 1020

moodle.yorku.ca

JUnit and Eclipse

To add JUnit to a project, select its properties (select “Properties”
from the “Project” menu option) and select the “Java Build
Path,” “Libraries” tab. Press the “Add Library . . . ” button and
then choose “JUnit.” Click the “Next” button, and on the next
dialog select “JUnit 4” from the drop-down list.

A JUnit test case class can be run by right-clicking on the test
class and selecting “Run As . . . ” and “JUnit Test.”

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Fraction

Exercise

Test the Fraction class of the franck.cse1020 package.

moodle.yorku.ca CSE 1020

http://www.eecs.yorku.ca/course_archive/2013-14/W/1020/api/franck.cse1020.api/franck/cse1020/Fraction.html
moodle.yorku.ca

Testing a main method

@Test
public void test() {

// command line arguments
String[] args = {};
// input given by the user via the keyboard
String user = "...";

// set up input and output
ByteArrayInputStream input =
new ByteArrayInputStream(user.getBytes());

System.setIn(input);
ByteArrayOutputStream output =
new ByteArrayOutputStream();

PrintStream stream = new PrintStream(output);
System.setOut(stream);

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Testing a main method

// call the main method
ClassName.main(args);

// verify the output
String expected = "...";
String actual = output.toString();
Assert.assertEquals(expected, actual);

}

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Test 5

When: Friday February 28, during the lab (14:30–16:00)

Where: Lassonde building, labs 1006, 1004, 1002

Material: Chapter 1–6 of the textbook, with a focus on
Chapter 5 and 6

What: Two programming questions

Note: For each question, you get 1 mark for the fact that your
code compiles

Note: Your code is not only marked for correctness but also
style (1 mark for each question)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

