
Software Development
CSE 1020

moodle.yorku.ca

moodle.yorku.ca CSE 1020

moodle.yorku.ca
moodle.yorku.ca

Software development

As we have already seen in Chapter 3, the process of software
development consists of several phases including

analysis

design

implementation

testing

maintenance

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Analyst

An analyst is responsible for translating the requirements of the
customer into a specification.

Software Engineering Requirements (CSE4312)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Designer

A designer/architect is responsible for developing a plan/algorithm
to fulfill the specification.

Fundamentals of Data Structures (CSE2011) and Design and
Analysis of Algorithms (CSE3101)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Developer

A developer/implementer is responsible for writing code that
implements the algorithm.

Introduction to Computer Science I and II (CSE1020 and
CSE1030)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Developer

databases
Introduction to Databases (CSE3412)

networks
Computer Network Protocols and Applications (CSE3214)

applications
Introduction to Computer Science I and II (CSE1020 and
CSE1030)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Tester

A tester is responsible for checking whether the code satisfies the
specification.

Software Engineering Testing (CSE4313)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Team Composition

A team may be composed of
analysts 25%
designers 10%
developers 40%
testers 25%

These numbers are estimates provided by someone in the field of software development.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How does the information flow?

Analysis
specification

��

Design
algorithm

��

Implementation
code

��

Testing

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How does our team collaborate?

Analysis

��

Design

��

RR

Implementation

��

UU

Testing

UU

In an ideal world, a phase only has impact on the ones immediately
before and after it. However, . . .

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Testing may have impact on design

Analysis

��

Design

��

RR

Implementation

��

UU

Testing

UU

OO

Winston W. Royce. Managing the development of large software

systems. In Proceedings of WESCON, pages 1–9, Los Angeles, CA, USA,

August 1970. IEEE.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Waterfall model

Analysis

��

Design

��

Implementation

��

Testing

OO

OO

OO

Although the waterfall model is often attributed to Royce, neither the

above diagram nor the term “waterfall model” can be found in his paper.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Royce’s model

Analysis
��

Design
��

Implementation
��

Testing

��

vv

rr
Analysis

��

Design
��

Implementation
��

Testing

Winston W. Royce. Managing the development of large software

systems. In Proceedings of WESCON, pages 1–9, Los Angeles, CA, USA,

August 1970. IEEE.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Overview of development methodologies

waterfall model do it once risky
Royce’s model do it twice less risky

IID

do it . . . even less risky

IID = iterative and incremental development

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Overview of development methodologies

waterfall model do it once risky
Royce’s model do it twice less risky
IID do it many times even less risky

IID = iterative and incremental development

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Iterative and Incremental Development

Design // Implementation

��

Analysis

//

Testing

nnEvaluation

��

OO

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Example of IID projects

project: command and control system for submarine
iterations: four iterations of six months each

Craig Larman and Victor R. Basili. Iterative and incremental

development: a brief history. IEEE Computer, 36(6):47–56, June 2003.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Example of IID projects

project: light airborne multipurpose system
iterations: 45 iterations of one month each

Craig Larman and Victor R. Basili. Iterative and incremental

development: a brief history. IEEE Computer, 36(6):47–56, June 2003.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Different IID methodologies

extreme programming (XP)
Software Design (CSE3311)

rational unified process (RUP)

. . .

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Unified Modeling Language (UML)

UML was designed by “the three amigos” Grady Booch, Ivar
Jacobson and James Rumbaugh in the mid 1990s.

UML provides a large variety of different types of diagrams:

class diagrams

object diagrams

activity diagrams

interaction diagrams

. . .

These diagrams can be used to model software.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

A Class Diagram

java::util::Scanner

moodle.yorku.ca CSE 1020

moodle.yorku.ca

A Class Diagram

java::util::Scanner
+ hasNext() : boolean
+ next() : String

moodle.yorku.ca CSE 1020

moodle.yorku.ca

A Class Diagram

java::lang::Integer
+ MAX VALUE : int
+ MIN VALUE : int
+ intValue() : int
+ parseInt(String) : int
+ toString() : String

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How are these classes related?

URL url = new URL("http://www.sochi2014.com/en/medals");
InputStream stream = url.openStream();
Scanner urlInput = new Scanner(stream);
...
while (urlInput.hasNextLine()) {

String line = urlInput.nextLine();
...

}
urlInput.close();

moodle.yorku.ca CSE 1020

moodle.yorku.ca

A Class Diagram

java::util::Scanner

java::io::InputStream

java::net::URL

Scanner has-a InputStream (Chapter 8)

URL uses InputStream

moodle.yorku.ca CSE 1020

moodle.yorku.ca

A More Detailed Class Diagram

java::util::Scanner
+ close()
+ hasNextLine() : boolean
+ nextLine() : String

java::io::InputStream

java::net::URL
+ openStream() : InputStream

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Testing

Question

Should we test?

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.

The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3. May 2002.

Answer

Yes!

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Testing

Question

Should we test?

Based on the software developer and user surveys, the national
annual costs of an inadequate infrastructure for software testing is
estimated to range from $22.2 to $59.5 billion.

The Economic Impacts of Inadequate Infrastructure for Software
Testing. Planning Report 02-3. May 2002.

Answer

Yes!

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Testing

P. Liggesmeyer, M. Rothfelder, M. Rettelbach and T. Ackermann.
Qualitätssicherung Software-basierter technischer Systeme.
Informatik Spektrum, 21(5):249–258, 1998.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

However ...

“Program testing can be used to show the presence of bugs, but
never to show their absence!”

Edsger W. Dijkstra. Notes on structured programming. Report
70-WSK-03, Technological University Eindhoven, April 1970.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Edsger Wybe Dijkstra

Member of the Royal
Netherlands Academy of Arts
and Sciences (1971)

Distinguished Fellow of the
British Computer Society
(1971)

Recipient of the Turing Award
(1972)

Foreign Honorary Member of
the American Academy of Arts
and Sciences (1975) Edsger Wybe Dijkstra

(1930–2002)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Another Way to Find Bugs

Formal verification: proving that code satisfies particular properties
of interest.

The two most used approaches to formal verification are

model checking

theorem proving

Introduction to Program Verification (CSE3341)

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How to Test Code?

input
// Code

output
//

Provide the input.

Run the code.

Compare the output with the expected output.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Terminology

Test case: an input that satisfies the precondition.

Test suite/test vector: a collection of test cases.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

White Box Testing

input
// public class . . .

output
//

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Black Box Testing

input
// Code

output
//

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Why Black Box Testing?

A Java archive (JAR) file usually only contains the bytecode and
not the Java code.

Developers can obfuscate JAR files so that a user of the JAR file
does not get much information regarding the original Java code.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How to Provide the Test Cases?

Enter the test cases manually.

Read the test cases from files.

Generate the test cases by an app.

Use the launch method of the ToolBox class.

Use a testing framework such as JUnit.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How to Determine the Expected Result?

Use a different solution to the problem that is known to be
correct.

Use an approximate solution to the problem.

. . .

moodle.yorku.ca CSE 1020

moodle.yorku.ca

How to Compare the Result with the Expected Result?

Check it manually.

Read the expected result from a file.

Generate the expected result by an app.

Use a testing framework such as JUnit.

Sometimes, it is much easier checking that the output is correct
than computing the output. For example, it is much easier
checking that a list of elements is sorted than sorting a list of
elements.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Which Test Cases?

Likely cases (black box and white box testing).

Boundary cases (black box and white box testing).

Cases that cover all execution paths (white box testing only).

moodle.yorku.ca CSE 1020

moodle.yorku.ca

Testing

Exercise

Test the method parseInt of the class Integer of the package
com.cheapbutquestionable. Its API can be found here and its
jar can be found here.

moodle.yorku.ca CSE 1020

http://www.eecs.yorku.ca/course_archive/2013-14/F/1020/api/cheap.api/com/cheapbutquestionable/Integer.html
http://www.eecs.yorku.ca/course_archive/2013-14/F/classpath/1020/cheap.jar
moodle.yorku.ca

To do

Study Chapter 7 of the textbook.

moodle.yorku.ca CSE 1020

moodle.yorku.ca

