
1

ALGORITHM ANALYSIS
CSE 2011
Winter 2013

8 January 2013 1

Introduction
• What is an algorithm?

•  a clearly specified set of simple instructions to be followed to
solve a problem
•  Takes a set of values, as input and
•  produces a value, or set of values, as output

•  May be specified
•  In English
•  As a computer program
•  As a pseudo-code

• Data structures
•  Methods of organizing data

• Program = algorithms + data structures

2

2

Introduction
• Why need algorithm analysis ?

•  Writing a working program is not good enough.
•  The program may be inefficient!
•  If the program is run on a large data set, then the running time

becomes an issue.

3

Example: Selection Problem
• Given a list of N numbers, determine the kth largest, where

k ≤ N.
• Algorithm 1:

(1) Read N numbers into an array
(2) Sort the array in decreasing order by some simple algorithm
(3) Return the element in position k

4

3

Example: Selection Problem (2)
• Algorithm 2:

(1) Read the first k elements into an array and sort them in
decreasing order

(2) Each remaining element is read one by one
•  If smaller than the kth element, then it is ignored
•  Otherwise, it is placed in its correct spot in the array, bumping one

element out of the array.
(3) The element in the kth position is returned as the answer.

5

Example: Selection Problem (3)
• Which algorithm is better when

• N = 100 and k = 100?
• N = 100 and k = 1?

• What happens when N = 1,000,000 and k = 500,000?

•  There exist better algorithms.

6

4

Algorithm Analysis
• We only analyze correct algorithms.

• An algorithm is correct
•  If, for every input instance, it halts with the correct output.

•  Incorrect algorithms
•  Might not halt at all on some input instances.
•  Might halt with other than the desired answer.

7

Algorithm Analysis (2)
l Analyzing an algorithm

¡ Predicting the resources that the algorithm requires.
¡ Resources include

l Memory (space)
l Computational time (usually most important)
l Communication bandwidth (in parallel and distributed computing)

8

5

Algorithm Analysis (3)
•  Factors affecting the running time:

•  computer
•  compiler
•  algorithm used
•  input to the algorithm

•  The content of the input affects the running time
•  Typically, the input size (number of items in the input) is the main

consideration.
•  sorting problem ⇒ the number of items to be sorted
•  multiply two matrices together ⇒ the total number of elements in the two

matrices
•  And sometimes the input order as well (e.g., sorting algorithms).

•  Machine model assumed
•  Instructions are executed one after another, with no concurrent

operations ⇒ not parallel computers

9

Analysis Model
•  It takes exactly one time unit to do any calculation
such as
•  + , -, * , /, %, &, |, &&, ||, etc.
•  comparison
•  assignment

• There is an infinite amount of memory.
•  It does not consider the cost associated with page
faulting or swapping.

•  It does not include I/O costs (which is usually one
or more orders of magnitude higher than
computation costs).

10

6

An Example
int sum (int n) {
 int partialSum;
1 partialSum = 0;
2 for (int i = 0; i <= n-1; i++)
3 partialSum += i*i*i;
4 return partialSum;
}
•  Lines 1 and 4: one unit each
•  Line 3: 4N
•  Line 2: 1+(N+1)+N=2N+2
•  Total: 6N+4 ⇒ O(N)
!

11

Running Time Calculations
• Throw away leading constants.
• Throw away low-order terms.
• Compute a Big-Oh running time:

•  An upper bound for running time
•  Never underestimate the running time of a program
•  The program may end earlier, but never later (worst-case

running time)

12

7

General Rules for Big-Oh: for loops
•  for loops

•  at most the running time of the statements inside the for
loop (including tests) times the number of iterations.

• Nested for loops

•  the running time of the statement multiplied by the product
of the sizes of all the for loops.

•  O(N 2)

13

Consecutive Statements
• Consecutive statements

•  These just add.
•  O(N) + O(N2) = O(N2)

14

8

if – then – else
•  if C then S1
 else S2

•  never more than the running time of the test plus the larger of
the running times of S1 and S2.

if (n > 0)
 for (int i = 0; i < n; i++)
 sum += i;
else
 System.out.println("Invalid input");

15

Strategies
• Analyze from the inside out (loops).
•  If there are method calls, analyze these first.
• Recursive methods (later):

•  Could be just a hidden “for” loop ⇒ simple.
•  Solve a recurrence ⇒ more complex.

16

9

Worst- / Average- / Best-Case
•  Worst-case running time of an algorithm:

•  The longest running time for any input of size n
•  An upper bound on the running time for any input
 ⇒ guarantee that the algorithm will never take longer
•  Example: Sort a set of numbers in increasing order; and the input is

in decreasing order
•  The worst case can occur fairly often

•  Example: searching a database for a particular piece of information
•  Best-case running time:

•  sort a set of numbers in increasing order; and the input is already in
increasing order

•  Average-case running time:
•  May be difficult to define what “average” means

17

Example
• Given an array of integers, return true if the array contains

number 100, and false otherwise.
•  Best case: ?
•  Worst case: ?
•  Average case: ?

18

10

Informal Introduction to O, Ω and Θ
•  Given an unsorted array of

integers, return true if a number
k is in the array and false
otherwise.

for(i = 0; i < N; i++)
 if (k == A[i])
 return (true);
return (false);

•  Worst-case running time is O(N).
 ⇒The alg has O(N) running time.

•  Best-case running time is O(1).
 ⇒ The alg has Ω(1) running time.

•  Given an unsorted array of
integers, find and return the
maximum value stored in the
array.

max = A[0];
for(i = 1; i < N; i++)
 if (max < A[i])
 max = A[i];
return(max);

•  Worst-case running time is O(N).
•  Best-case running time is O(N).
•  ⇒The alg has Θ(N) running time.

Running Time of Algorithms
• Bounds are for algorithms, rather than programs.

•  Programs are just implementations of an algorithm.
•  Almost always the details of the program do not affect the

bounds.

• Bounds are for algorithms, rather than problems.
•  A problem can be solved with several algorithms, some

are more efficient than others.

20

11

Example: Insertion Sort

1) Initially p = 1

2) Let the first p elements be sorted.

3) Insert the (p+1)th element properly in the list so
that now p+1 elements are sorted.

4) Increment p and go to step (3)

21

Insertion Sort: Example

22

12

Insertion Sort: Algorithm

23

  Consists of N - 1 passes
  For pass p = 1 through N - 1, ensures that the

elements in positions 0 through p are in sorted order
  elements in positions 0 through p - 1 are already sorted
  move the element in position p left until its correct place is

found among the first p + 1 elements

Example 2

24

To sort the following numbers in increasing order:

34 8 64 51 32 21

p = 1; tmp = 8;

34 > tmp, so second element a[1] is set to 34: {8, 34}…

We have reached the front of the list. Thus, 1st position a[0] = tmp=8

After 1st pass: 8 34 64 51 32 21

 (first 2 elements are sorted)

13

25

P = 2; tmp = 64;
34 < 64, so stop at 3rd position and set 3rd position = 64
After 2nd pass: 8 34 64 51 32 21
 (first 3 elements are sorted)

P = 3; tmp = 51;
51 < 64, so we have 8 34 64 64 32 21,
34 < 51, so stop at 2nd position, set 3rd position = tmp,
After 3rd pass: 8 34 51 64 32 21
 (first 4 elements are sorted)
P = 4; tmp = 32,
32 < 64, so 8 34 51 64 64 21,
32 < 51, so 8 34 51 51 64 21,
next 32 < 34, so 8 34 34, 51 64 21,
next 32 > 8, so stop at 1st position and set 2nd position = 32,
After 4th pass: 8 32 34 51 64 21

P = 5; tmp = 21, . . .
After 5th pass: 8 21 32 34 51 64

Analysis: Worst-case Running Time
• What is the worst input?

• Consider a reversed sorted list as input.
• When a[p] is inserted into the sorted sub-array a[0...p-1],

we need to compare a[p] with all elements in a[0...p-1]
and move each element one position to the right
 ⇒ i steps.

•  Inner loop is executed p times, for each p = 1, 2, , ..., N-1
 ⇒ Overall: 1 + 2 + 3 + . . . + N-1 = … = O(N2)

26

14

Analysis: Best-case Running Time
•  The input is already sorted in the right order.
• When inserting a[p] into the sorted sub-array a[0...p-1],

only need to compare a[p] with a[p-1] and there is no data
movement
 ⇒ O(1)

•  For each iteration of the outer for-loop, the inner for-loop

terminates after checking the loop condition once
 ⇒ O(N) time

•  If input is nearly sorted, insertion sort runs fast.

27

Insertion Sort: Summary

• O(N2)
• Ω(N)
• Space requirement is O(?)

28

15

Next time …
• Growth rates
• O, Ω, Θ, o

• Reading for this lecture: chapter 4

29

