
Asymptotic Analysis of Algorithms

Chapter 4

Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

The Importance of Asymptotic Analysis
<Adi Shamir <shamir@wisdom.weizmann.ac.il>>

Thu, 26 Jul 2001 00:50:03 +0300

Subject: New results on WEP (via Matt Blaze)

WEP is the security protocol used in the widely deployed IEEE 802.11 wireless

LAN's. This protocol received a lot of attention this year, and several groups of

researchers have described a number of ways to bypass its security.

Attached you will find a new paper which describes a truly practical direct attack on

WEP's cryptography. It is an extremely powerful attack which can be applied even

when WEP's RC4 stream cipher uses a 2048 bit secret key (its maximal size) and

128 bit IV modifiers (as proposed in WEP2). The attacker can be a completely

passive eavesdropper (i.e., he does not have to inject packets, monitor responses, or

use accomplices) and thus his existence is essentially undetectable. It is a pure

known-ciphertext attack (i.e., the attacker need not know or choose their

corresponding plaintexts). After scanning several hundred thousand packets, the

attacker can completely recover the secret key and thus decrypt all the

ciphertexts. The running time of the attack grows linearly instead of

exponentially with the key size, and thus it is negligible even for 2048 bit keys.

Adi Shamir

Source: The Risks Digest (catless.ncl.ac.uk/Risks)

The Importance of Asymptotic Analysis
<Monty Solomon <monty@roscom.com>>

Sat, 31 May 2003 10:22:56 -0400

Denial of Service via Algorithmic Complexity Attacks

Scott A. Crosby <scrosby@cs.rice.edu>

Dan S. Wallach <dwallach@cs.rice.edu>

Department of Computer Science, Rice University

We present a new class of low-bandwidth denial of service attacks that exploit algorithmic

deficiencies in many common applications' data structures. Frequently used data

structures have ``average-case'' expected running time that's far more efficient than

the worst case. For example, both binary trees and hash tables can degenerate to

linked lists with carefully chosen input. We show how an attacker can effectively compute

such input, and we demonstrate attacks against the hash table implementations in two

versions of Perl, the Squid web proxy, and the Bro intrusion detection system. Using

bandwidth less than a typical dialup modem, we can bring a dedicated Bro server to its

knees; after six minutes of carefully chosen packets, our Bro server was dropping as much

as 71% of its traffic and consuming all of its CPU. We show how modern universal hashing

techniques can yield performance comparable to commonplace hash functions while being

provably secure against these attacks.

Source: The Risks Digest (catless.ncl.ac.uk/Risks)

The Purpose of Asymptotic Analysis

• To estimate how long a program will run.

• To estimate the largest input that can reasonably be given to the program.

• To compare the efficiency of different algorithms.

• To help focus on the parts of code that are executed the largest number of times.

• To choose an algorithm for an application.

Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Running Time

• Most algorithms transform input
objects into output objects.

• The running time of an algorithm
typically grows with the input size.

• Average case time is often difficult
to determine.

• We focus on the worst case
running time.

– Easier to analyze

– Reduces risk

0

20

40

60

80

100

120

1000 2000 3000 4000

R
u

n
n

in
g

 T
im

e

Input Size

best case

average case

worst case

Experimental Studies

• Write a program

implementing the algorithm

• Run the program with

inputs of varying size and

composition

• Use a method like

System.currentTimeMillis() to

get an accurate measure of

the actual running time

• Plot the results
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100

T
im

e
 (

m
s
)

Input Size

Limitations of Experiments

• It is necessary to implement the algorithm, which may

be difficult

• Results may not be indicative of the running time on

other inputs not included in the experiment.

• In order to compare two algorithms, the same hardware

and software environments must be used

Theoretical Analysis

• Uses a high-level description of the algorithm instead

of an implementation

• Characterizes running time as a function of the input

size, n.

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm

independent of the hardware/software environment

Primitive Operations

• Basic computations

performed by an algorithm

• Identifiable in pseudocode

• Largely independent from the

programming language

• Assumed to take a constant

amount of time

• Examples:

– Evaluating an

expression

– Assigning a value

to a variable

– Indexing into an

array

– Calling a method

– Returning from a

method

Counting Primitive Operations

• By inspecting the pseudocode, we can determine the

maximum number of primitive operations executed by

an algorithm, as a function of the input size

Algorithm arrayMax(A, n)

operations

currentMax  A[0] 2

for i  1 to n - 1 do 2n

if A[i] > currentMax then 2(n -1)

currentMax  A[i] 2(n -1)

return currentMax 1

Total 6n -1

?

?

?

?

?

?

Estimating Running Time

• Algorithm arrayMax executes 6n - 1 primitive

operations in the worst case. Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then

a (6n - 1) ≤ T(n) ≤ b(6n - 1)

• Hence, the running time T(n) is bounded by two

linear functions

Growth Rate of Running Time

• Changing the hardware/ software environment

– Affects T(n) by a constant factor, but

– Does not qualitatively alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an

intrinsic property of algorithm arrayMax

Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Constant Factors

• On a logarithmic

scale, the growth

rate is not affected

by

– constant factors or

– lower-order terms

• Examples

– 102n + 105 is a linear

function

– 105n2 + 108n is a

quadratic function

Seven Important Functions

• Seven functions that often

appear in algorithm analysis:

– Constant ≈ 1

– Logarithmic ≈ log n

– Linear ≈ n

– N-Log-N ≈ n log n

– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

• In a log-log chart, the slope of

the line corresponds to the

growth rate of the function.

We will follow the convention that logn º log

2
n.

Classifying Functions

Note: The universe is estimated to contain ~1080 particles.

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n

n

Let’s practice classifying functions

Which are more alike?

n1000 n2 2n

Which are more alike?

Polynomials

n1000 n2 2n

Which are more alike?

1000n2 3n2 2n3

Which are more alike?

Quadratic

1000n2 3n2 2n3

Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

• properties of logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbx
a = alogbx

logba = logxa/logxb

• properties of exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a

b

bc = a c*log
a

b

Summations

Logarithms and Exponents

Existential and universal operators

Proof techniques

Some Math to Review

$g"b Loves(b, g)

"g$b Loves(b, g)

• existential and universal
operators

 $g,"b,loves(b,g) "g,$b,loves(b,g)

Understand Quantifiers!!!

One girl
Could be a separate girl

for each boy.

Sam Mary

Bob Beth

John
Marilyn

Monro

Fred Ann

Sam Mary

Bob Beth

John
Marilyn

Monro

Fred Ann

Asymptotic Notation

• The notation was first introduced by number theorist Paul Bachmann

in 1894, in the second volume of his book Analytische Zahlentheorie

("analytic number theory”).

• The notation was popularized in the work of number theorist

Edmund Landau; hence it is sometimes called a Landau symbol.

• It was popularized in computer science by Donald Knuth, who

(re)introduced the related Omega and Theta notations.

• Knuth also noted that the (then obscure) Omega notation had been

introduced by Hardy and Littlewood under a slightly different

meaning, and proposed the current definition.

Source: Wikipedia

 (O,W,Q and all of that)

http://en.wikipedia.org/wiki/Paul_Bachmann
http://en.wikipedia.org/wiki/Analytic_number_theory
http://en.wikipedia.org/wiki/Edmund_Landau
http://en.wikipedia.org/wiki/Donald_Knuth

Big-Oh Notation

• Given functions f(n) and g(n),

we say that f(n) is O(g(n)) if

there are positive constants

c and n0 such that

f(n) ≤ cg(n) for n > n0

• Example: 2n + 10 is O(n)

– 2n + 10 ≤ cn

– (c - 2) n > 10

– n > 10/(c - 2)

– Pick c = 3 and n0 = 10 1

10

100

1,000

10,000

1 10 100 1,000
n

3n

2n+10

n

END OF LECTURE, JAN 9,

2014

Definition of “Big Oh”

, 0 00 : , () ()c n n n f n cg n >   

()f n

()g n

()cg n

n

() (())f n O g n

Big-Oh Example

• Example: the function

n2 is not O(n)

– n2 ≤ cn

– n < c

– The above inequality

cannot be satisfied

since c must be a

constant

More Big-Oh Examples
7n-2

7n-2 is O(n)

need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥n0

this is true for c = 5 and n0 = 20

 3 log n + 5
3 log n + 5 is O(log n)

need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 4 and n0 = 32

Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the

growth rate of a function

• The statement “f(n) is O(g(n))” means that the growth

rate of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions

according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

Big-Oh Rules

• If f(n) is a polynomial of degree d, then f(n) is

O(nd), i.e.,

1.Drop lower-order terms

2.Drop constant factors

• We generally specify the tightest bound possible

– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class

– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”

Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the running time

in big-Oh notation

• To perform the asymptotic analysis

– We find the worst-case number of primitive operations executed as a

function of the input size

– We express this function with big-Oh notation

• Example:

– We determine that algorithm arrayMax executes at most 6n - 1

primitive operations

– We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are eventually dropped

anyhow, we can disregard them when counting primitive operations

Computing Prefix Averages

• We further illustrate asymptotic

analysis with two algorithms for

prefix averages

• The i-th prefix average of an array X

is the average of the first (i + 1)

elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

• Computing the array A of prefix

averages of another array X has

applications to financial analysis, for

example.

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7

X

A

Prefix Averages (v1)
The following algorithm computes prefix averages by applying the
definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A  new array of n integers n

for i  0 to n - 1 do n

s  X[0] n

for j  1 to i do 1 + 2 + …+ (n - 1)

s  s + X[j] 1 + 2 + …+ (n - 1)

A[i]  s / (i + 1) n

return A 1

Arithmetic Progression

• The running time of

prefixAverages1 is

O(1 + 2 + …+ n)

• The sum of the first n

integers is n(n + 1) / 2

– There is a simple visual

proof of this fact

• Thus, algorithm

prefixAverages1 runs in

O(n2) time
0

1

2

3

4

5

6

7

1 2 3 4 5 6

Prefix Averages (v2)
The following algorithm computes prefix averages efficiently by keeping
a running sum

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A  new array of n integers n

s  0 1

for i  0 to n - 1 do n

s  s + X[i] n

A[i]  s / (i + 1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time

Relatives of Big-Oh

Big-Omega

 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that

f(n) ≥ c•g(n) for n ≥ n0

Big-Theta

 f(n) is Θ(g(n)) if there are constants c1 > 0
and c2 > 0 and an integer constant n0 ≥ 1
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0

Intuition for Asymptotic Notation

Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or

equal to g(n)

big-Omega

 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or
equal to g(n)

big-Theta

 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

Note that f (n)ÎQ g(n)() º f (n)ÎO g(n)() and f (n)ÎW g(n)()()

Definition of Theta

f(n) is sandwiched between c1g(n) and c2g(n)

f(n) = θ(g(n))

 >    , ,1 2 0 0 1 20 : , () () ()c c n n n c g n f n c g n

Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

Time Complexity of an Algorithm

• O(n2): For any input size n ≥ n0, the algorithm takes

no more than cn2 time on every input.

• Ω(n2): For any input size n ≥ n0, the algorithm takes at

least cn2 time on at least one input.

• θ (n2): Do both.

The time complexity of an algorithm is

the largest time required on any input

of size n. (Worst case analysis.)

What is the height of tallest person in the

class?

Bigger than this?

Need to find

only one person

who is taller

Need to look at

every person

Smaller than this?

Time Complexity of a Problem

• O(n2): Provide an algorithm that solves the problem in no more than

this time.

– Remember: for every input, i.e. worst case analysis!

• Ω(n2): Prove that no algorithm can solve it faster.

– Remember: only need one input that takes at least this long!

• θ (n2): Do both.

The time complexity of a problem is

the time complexity of the fastest

algorithm that solves the problem.

Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity

