
Asymptotic Analysis of Algorithms

Chapter 4



Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity



Overview

• Motivation

• Definition of Running Time

• Classifying Running Time

• Asymptotic Notation & Proving Bounds

• Algorithm Complexity vs Problem Complexity



The Importance of Asymptotic Analysis
<Adi Shamir <shamir@wisdom.weizmann.ac.il>> 

Thu, 26 Jul 2001 00:50:03 +0300

Subject: New results on WEP (via Matt Blaze) 

WEP is the security protocol used in the widely deployed IEEE 802.11 wireless 

LAN's. This protocol received a lot of attention this year, and several groups of 

researchers have described a number of ways to bypass its security. 

Attached you will find a new paper which describes a truly practical direct attack on 

WEP's cryptography. It is an extremely powerful attack which can be applied even 

when WEP's RC4 stream cipher uses a 2048 bit secret key (its maximal size) and 

128 bit IV modifiers (as proposed in WEP2). The attacker can be a completely 

passive eavesdropper (i.e., he does not have to inject packets, monitor responses, or 

use accomplices) and thus his existence is essentially undetectable. It is a pure 

known-ciphertext attack (i.e., the attacker need not know or choose their 

corresponding plaintexts). After scanning several hundred thousand packets, the 

attacker can completely recover the secret key and thus decrypt all the 

ciphertexts. The running time of the attack grows linearly instead of 

exponentially with the key size, and thus it is negligible even for 2048 bit keys. 

Adi Shamir 

Source:  The Risks Digest (catless.ncl.ac.uk/Risks)



The Importance of Asymptotic Analysis
<Monty Solomon <monty@roscom.com>> 

Sat, 31 May 2003 10:22:56 -0400

Denial of Service via Algorithmic Complexity Attacks 

Scott A. Crosby <scrosby@cs.rice.edu> 

Dan S. Wallach <dwallach@cs.rice.edu> 

Department of Computer Science, Rice University 

We present a new class of low-bandwidth denial of service attacks that exploit algorithmic 

deficiencies in many common applications' data structures. Frequently used data 

structures have ``average-case'' expected running time that's far more efficient than 

the worst case. For example, both binary trees and hash tables can degenerate to 

linked lists with carefully chosen input. We show how an attacker can effectively compute 

such input, and we demonstrate attacks against the hash table implementations in two 

versions of Perl, the Squid web proxy, and the Bro intrusion detection system. Using 

bandwidth less than a typical dialup modem, we can bring a dedicated Bro server to its 

knees; after six minutes of carefully chosen packets, our Bro server was dropping as much 

as 71% of its traffic and consuming all of its CPU. We show how modern universal hashing 

techniques can yield performance comparable to commonplace hash functions while being 

provably secure against these attacks. 

Source:  The Risks Digest (catless.ncl.ac.uk/Risks)



The Purpose of Asymptotic Analysis

• To estimate how long a program will run. 

• To estimate the largest input that can reasonably be given to the program. 

• To compare the efficiency of different algorithms.

• To help focus on the parts of code that are executed the largest number of times. 

• To choose an algorithm for an application.
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Running Time

• Most algorithms transform input 
objects into output objects.

• The running time of an algorithm 
typically grows with the input size.

• Average case time is often difficult 
to determine.

• We focus on the worst case 
running time.

– Easier to analyze

– Reduces risk
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Experimental Studies

• Write a program 

implementing the algorithm

• Run the program with 

inputs of varying size and 

composition

• Use a method like 

System.currentTimeMillis() to 

get an accurate measure of 

the actual running time

• Plot the results
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Limitations of Experiments

• It is necessary to implement the algorithm, which may 

be difficult

• Results may not be indicative of the running time on 

other inputs not included in the experiment. 

• In order to compare two algorithms, the same hardware 

and software environments must be used



Theoretical Analysis

• Uses a high-level description of the algorithm instead 

of an implementation

• Characterizes running time as a function of the input 

size, n.

• Takes into account all possible inputs

• Allows us to evaluate the speed of an algorithm 

independent of the hardware/software environment



Primitive Operations

• Basic computations 

performed by an algorithm

• Identifiable in pseudocode

• Largely independent from the 

programming language

• Assumed to take a constant 

amount of time

• Examples:

– Evaluating an 

expression

– Assigning a value 

to a variable

– Indexing into an 

array

– Calling a method

– Returning from a 

method



Counting Primitive Operations

• By inspecting the pseudocode, we can determine the 

maximum number of primitive operations executed by 

an algorithm, as a function of the input size

Algorithm arrayMax(A, n)

# operations

currentMax  A[0] 2

for i  1 to n - 1 do 2n

if A[i] > currentMax then 2(n -1)

currentMax  A[i] 2(n -1)

return currentMax 1

Total 6n -1
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Estimating Running Time

• Algorithm arrayMax executes 6n - 1 primitive 

operations in the worst case.  Define:

a = Time taken by the fastest primitive operation

b = Time taken by the slowest primitive operation

• Let T(n) be worst-case time of arrayMax. Then

a (6n - 1) ≤ T(n) ≤ b(6n - 1)

• Hence, the running time T(n) is bounded by two 

linear functions



Growth Rate of Running Time

• Changing the hardware/ software environment 

– Affects T(n) by a constant factor, but

– Does not qualitatively alter the growth rate of T(n)

• The linear growth rate of the running time T(n) is an 

intrinsic property of algorithm arrayMax
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Constant Factors

• On a logarithmic 

scale, the growth 

rate is not affected 

by

– constant factors or 

– lower-order terms

• Examples

– 102n + 105 is a linear 

function

– 105n2 + 108n is a 

quadratic function



Seven Important Functions

• Seven functions that often 

appear in algorithm analysis:

– Constant ≈ 1

– Logarithmic ≈ log n

– Linear ≈ n

– N-Log-N ≈ n log n

– Quadratic ≈ n2

– Cubic ≈ n3

– Exponential ≈ 2n

• In a log-log chart, the slope of 

the line corresponds to the 

growth rate of the function.

  
We will follow the convention that logn º log

2
n.



Classifying Functions

Note: The universe is estimated to contain ~1080 particles.

T(n) 10 100 1,000 10,000

log n 3 6 9 13

n1/2 3 10 31 100

10 100 1,000 10,000

n log n 30 600 9,000 130,000

n2 100 10,000 106 108

n3 1,000 106 109 1012

2n 1,024 1030 10300 103000

n

n



Let’s practice classifying functions



Which are more alike?

n1000 n2 2n



Which are more alike?

Polynomials

n1000 n2 2n



Which are more alike?

1000n2 3n2 2n3



Which are more alike?

Quadratic

1000n2 3n2 2n3
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• properties of logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbx
a = alogbx

logba = logxa/logxb

• properties of exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a

b

bc = a c*log
a

b

Summations

Logarithms and Exponents

Existential and universal operators

Proof techniques

Some Math to Review

  

$g"b Loves(b, g)

"g$b Loves(b, g)

• existential and universal 
operators



  $g,"b,loves(b,g)   "g,$b,loves(b,g)

Understand Quantifiers!!!

One girl
Could be a separate girl 

for each boy.

Sam Mary

Bob Beth

John
Marilyn 

Monro

Fred Ann

Sam Mary

Bob Beth

John
Marilyn 

Monro

Fred Ann



Asymptotic Notation

• The notation was first introduced by number theorist Paul Bachmann

in 1894, in the second volume of his book Analytische Zahlentheorie

("analytic number theory”). 

• The notation was popularized in the work of number theorist 

Edmund Landau; hence it is sometimes called a Landau symbol. 

• It was popularized in computer science by Donald Knuth, who 

(re)introduced the related Omega and Theta notations. 

• Knuth also noted that the (then obscure) Omega notation had been 

introduced by Hardy and Littlewood under a slightly different 

meaning, and proposed the current definition. 

Source:  Wikipedia

 (O,W,Q and all of that)

http://en.wikipedia.org/wiki/Paul_Bachmann
http://en.wikipedia.org/wiki/Analytic_number_theory
http://en.wikipedia.org/wiki/Edmund_Landau
http://en.wikipedia.org/wiki/Donald_Knuth


Big-Oh Notation

• Given functions f(n) and g(n), 

we say that f(n) is O(g(n)) if 

there are positive constants

c and n0 such that

f(n) ≤ cg(n)  for n > n0

• Example: 2n + 10 is O(n)

– 2n + 10 ≤ cn

– (c - 2) n > 10

– n > 10/(c - 2)

– Pick c = 3 and n0 = 10 1
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Definition of  “Big Oh”

, 0 00 : , ( ) ( )c n n n f n cg n >   

( )f n

( )g n

( )cg n

n

( ) ( ( ))f n O g n



Big-Oh Example

• Example: the function 

n2 is not O(n)

– n2 ≤ cn

– n < c

– The above inequality 

cannot be satisfied 

since c must be a 

constant 



More Big-Oh Examples
7n-2

7n-2 is O(n)

need c > 0 and n0 ≥ 1 such that 7n-2 ≤ c•n for n ≥ n0

this is true for c = 7 and n0 = 1

 3n3 + 20n2 + 5
3n3 + 20n2 + 5 is O(n3)

need c > 0 and n0 ≥ 1 such that 3n3 + 20n2 + 5 ≤ c•n3 for n ≥n0

this is true for c = 5 and n0 = 20

 3 log n + 5
3 log n + 5 is O(log n)

need c > 0 and n0 ≥ 1 such that 3 log n + 5 ≤ c•log n for n ≥ n0

this is true for c = 4 and n0 = 32



Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the 

growth rate of a function

• The statement “f(n) is O(g(n))” means that the growth 

rate of f(n) is no more than the growth rate of g(n)

• We can use the big-Oh notation to rank functions 

according to their growth rate

f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes



Big-Oh Rules

• If f(n) is a polynomial of degree d, then f(n) is 

O(nd), i.e.,

1.Drop lower-order terms

2.Drop constant factors

• We generally specify the tightest bound possible

– Say “2n is O(n)” instead of “2n is O(n2)”

• Use the simplest expression of the class

– Say “3n + 5 is O(n)” instead of “3n + 5 is O(3n)”



Asymptotic Algorithm Analysis

• The asymptotic analysis of an algorithm determines the running time 

in big-Oh notation

• To perform the asymptotic analysis

– We find the worst-case number of primitive operations executed as a 

function of the input size

– We express this function with big-Oh notation

• Example:

– We determine that algorithm arrayMax executes at most 6n - 1

primitive operations

– We say that algorithm arrayMax “runs in O(n) time”

• Since constant factors and lower-order terms are eventually dropped 

anyhow, we can disregard them when counting primitive operations



Computing Prefix Averages

• We further illustrate asymptotic 

analysis with two algorithms for 

prefix averages

• The i-th prefix average of an array X

is the average of the first (i + 1) 

elements of X:

A[i] = (X[0] + X[1] + … + X[i])/(i+1)

• Computing the array A of prefix 

averages of another array X has 

applications to financial analysis, for 

example.
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Prefix Averages (v1)
The following algorithm computes prefix averages by applying the 
definition

Algorithm prefixAverages1(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A  new array of n integers n

for i  0 to n - 1 do n

s  X[0] n

for j  1 to i do 1 + 2 + …+ (n - 1)

s  s + X[j] 1 + 2 + …+ (n - 1)

A[i]  s / (i + 1) n

return A 1



Arithmetic Progression

• The running time of 

prefixAverages1 is

O(1 + 2 + …+ n)

• The sum of the first n

integers is n(n + 1) / 2

– There is a simple visual 

proof of this fact

• Thus, algorithm 

prefixAverages1 runs in 

O(n2) time 
0

1

2

3

4

5

6

7

1 2 3 4 5 6



Prefix Averages (v2)
The following algorithm computes prefix averages efficiently by keeping 
a running sum

Algorithm prefixAverages2(X, n)

Input array X of n integers

Output array A of prefix averages of X #operations

A  new array of n integers n

s  0 1

for i  0 to n - 1 do n

s  s + X[i] n

A[i]  s / (i + 1) n

return A 1

Algorithm prefixAverages2 runs in O(n) time 



Relatives of Big-Oh

Big-Omega

 f(n) is Ω(g(n)) if there is a constant c > 0 

and an integer constant n0 ≥ 1 such that 

f(n) ≥ c•g(n) for n ≥ n0

Big-Theta

 f(n) is Θ(g(n)) if there are constants c1 > 0 
and c2 > 0 and an integer constant n0 ≥ 1 
such that c1•g(n) ≤ f(n) ≤ c2•g(n) for n ≥ n0



Intuition for Asymptotic Notation

Big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or 

equal to g(n)

big-Omega

 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or 
equal to g(n)

big-Theta

 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)

  
Note that f (n)ÎQ g(n)( ) º f (n)ÎO g(n)( )  and f (n)ÎW g(n)( )( )



Definition of  Theta

f(n) is sandwiched between c1g(n) and c2g(n)

f(n) = θ(g(n))

 >    , ,1 2 0 0 1 20 : , ( ) ( ) ( )c c n n n c g n f n c g n
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Time Complexity of an Algorithm

• O(n2): For any input size n ≥ n0, the algorithm takes 

no more than cn2 time on every input.

• Ω(n2): For any input size n ≥ n0, the algorithm takes at 

least cn2 time on at least one input.

• θ (n2): Do both.

The time complexity of an algorithm is

the largest time required on any input 

of size n. (Worst case analysis.)



What is the height of tallest person in the 

class?

Bigger than this?

Need to find 

only one person 

who is taller

Need to look at 

every person

Smaller than this?



Time Complexity of a Problem

• O(n2): Provide an algorithm that solves the problem in no more than 

this time. 

– Remember: for every input, i.e. worst case analysis!

• Ω(n2): Prove that no algorithm can solve it faster.

– Remember:  only need one input that takes at least this long!

• θ (n2): Do both.

The time complexity of a problem is 

the time complexity of the fastest

algorithm that solves the problem.
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