
Numerical integration 
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Numerical integration 
 numerical integration attempts to estimate the value 

of a definite integral without solving for the indefinite 
integral; i.e., 
 estimate the value of 

 
 
without solving for 
 

 recall the first fundamental theorem of calculus 
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Numerical integration 
 why would you want to do this? 
 many indefinite integrals cannot be written in terms of 

elementary functions; e.g., the error function 
 
 

 the function 𝑓 𝑥  is not known; e.g., you only have 
measurements of some unknown function 𝑓(𝑥) 
 inertial measurement units (IMU) measure accelerations, the 

acceleration measurements are integrated to obtain velocity 
estimates, and the velocities are integrated to obtain position 

 the indefinite integral is known, but difficult or 
computationally expensive to evaluate 
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Aside 
 many symbolic math programs can solve for the 

indefinite integral if the integral can be expressed in 
terms of elementary functions 

 how do they do this? 
 http://en.wikipedia.org/wiki/Risch_algorithm 
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Numerical integration 
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Basic idea: replace 𝑓(𝑥) with 
something easier to integrate 
over the interval [𝑎, 𝑏] 



Rectangle (or midpoint) rule 
 replaces 𝑓 𝑥  with a constant over the interval [𝑎, 𝑏] 
 this approximates the area under 𝑓(𝑥) with a rectangle 
 height of the rectangle 

 
 

 width of the rectangle 
 
 

 area of the rectangle 
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Rectangle (or midpoint) rule 
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Trapezoid rule 
 replaces 𝑓 𝑥  with a line over the interval [𝑎, 𝑏] 
 this approximates the area under 𝑓(𝑥) with a trapezoid 
 sides of the trapezoid 

 
 

 width of the trapezoid 
 
 

 area of the trapezoid 
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Trapezoid rule 
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Simpson's rule 
 replaces 𝑓 𝑥  with a quadratic over the interval [𝑎, 𝑏] 
 this approximates the area under 𝑓(𝑥) as the area under a 

parabola 
 parabola passes through the points  

 
 
 

 area under the parabola 
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Simpson's rule 
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Composite rules 
 the midpoint, trapezoid, and Simpson's rules are 

called basic rules 
 the composite rule subdivides the range [𝑎, 𝑏] using 𝑛 

points to form (𝑛 − 1) panels 
 a basic rule is then applied to each panel 

 
 the value of the integral is the sum of the area of the 

panels 
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Composite rectangle (or midpoint) rule 
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Composite rectangle (or midpoint) rule 
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Composite trapezoid rule 
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Composite trapezoid rule 
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Composite Simpson's rule 
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In class exercise 
 implement composite rectangle, trapezoid, and 

Simpson's rule 
 test implementations using known integrals 
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Numerical integration in MATLAB 
 MATLAB provides functions for integration using 
 the trapezoidal rule 

 trapz  

 a more sophisticated composite rule (global adaptive 
quadrature) 
 integral, integral2, integral3   
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