while loop

» awhi le loop repeats a block of code as long as a
logical condition is true
» unlike a for loop

» there is no loop variable

» the number of times that the loop runs is not necessarily
determined ahead of time

while loop

if logical_condition is true

while logical_condition then the loop body is run once

loop body: a sequence of
MATLAB statements

after the loop body is run, the
loop restarts by checking the
end logical_condition

% repeat a loop until the user Inputs "y~

repeat = 1;

while (repeat)
%
% some code here that you want to repeat
%

% ask the user 1f they want to repeat again
answer = 1nput("Continue? (y 7 n)");
repeat = strcmp(answer, "y°);

end

while loop: infinte loops

» observe that it is very easy to create an infinite loop
usingawhile loop

» you must ensure that whatever happens in the loop body
eventually causes the logical condition to become false

» if you encounter an infinite loop in your program you
can press Ctrl + c to stop your program

» unfortunately this stops your entire program and not just
your loop

% infinite loop example

repeat = 1;

while (repeat)
%
% some code here that you want to repeat
%

% ask the user 1f they want to repeat again
answer = 1nput("Continue? (y 7 n)");

% comment out next line
% repeat = strcmp(answer, "y");
end

while loop: computing square root

» Hero's method

mathematician)

» to compute the square root of s

1.

2.
3.
4.

choose a starting value x,

let x4 |
let x, |

be t
be t)

he average of x and
he average of x; and

» named after Hero of Alexandria (1%t century Greek

| S/xg
| S /x4

let x5 |

be t)

he average of x, and

| s/x,, and so on

» how do you know when to stop?

while loop: computing square root

» Hero's method can be described mathematically as

Xo = /s

1 S
Xipr =5\ X+~
l

Vs = lim x;

1L—00

% compute the square root of

epsilon = le-9;

delta = Inf;

X = 0.5 * x;

while abs(delta) > epsilon
x1 = mean([x, s /7 X]);
delta = X1 — X;
X = XI;

end

while loop: roots of functions

» Hero's method is a special case of Newton's method
for finding roots of a real-valued function

» given a real-valued function
f(x)
find
x such that f(x) =0

while loop: Newton's method

» Newton's method can be described as

1. start with an initial estimate of the root x,
. 1=0

3. while |f(x;)| > €
f(xi)
f(xi)

Xi+1 = Xj —
I=i+1

10

function [root, xvals] = newton(x0, epsilon)

%NEWTON Newton®"s method for x°2 - 1

% ROOT = NEWTON(XO, EPSILON) finds a root of f(xX) = x*2 - 1 using

% Newton®s method starting from an initial estimate X0 and a tolerance EPSILON
%

% [ROOT, XVALS] = NEWTON(XO, EPSILON) also returns the iterative estimates

% in XVALS

xvals = x0;

X1 = X0;

while abs(f(x1)) > epsilon
xXj = x1 - f(x1) / fprime(xi);
X1 = XJ;
xvals = [xvals xi];

end

root = Xxi;

end

function [y 1 = f() local function: usable only inside
y=x=x -1 newton.m

end

function [yprime] = fprime(x)
yprime = 2 * x;
end

local function: usable only inside
newton.m

11

while loop: Newton's method

» what happens if you call Newton's method with:

» xg =1

» xo = —1
» Xog = 2

) Xg = —2
» xo = 100
» xo = —100
» xg =0

>

Xo=1le—6

12

while loop: Newton's method

» the main idea in Newton's method
» we cannot easily find a root of f(x)

» we can approximate f(x) around x; by using the tangent
line at x;

» we can easily compute the root of the tangent line as the x-
intercept of the tangent line

» we can use the root of the tangent line as an improved
estimate of the root of f(x)

13

while loop: Newton's method

» the main idea in Newton's method
» we cannot easily find a root of f(x)

» we can approximate f(x) around x; by using the tangent
line at x;

» we can easily compute the root of the tangent line as the x-
intercept of the tangent line

» we can use the root of the tangent line as an improved
estimate of the root of f(x)

» see plotnewton.m

14

Nested loops

» a nested loop is a loop inside a loop
» often encountered when working with arrays of values
» consider matrix-vector multiplication

Ax =D
TA(1L,1) A(L2) AL, 12T [b(1)]
A(2,1) A(2,2) A(Z,n) || x(2) _ | b(2)
A(m, 1) | A(m,2) A(n:z, n). _x(;’n)_ _b(;fn)_

» to compute b we need to compute m X n
multiplications

15

% for some (m x n) matrix A and (n x 1) vector X

[m, n] = size(A);

b = zeros(m, 1);
for row = 1:m
for col = 1:n
b(row) = b(row) + A(row, col) * x(col);
end
end

16

Nested loops: dipole electric potential

» the dipole electric potential at some point p is
proportional to:

CI+_|_CI—
ry T

IV «

17

Nested loops: dipole electric potential

» the lines of equipotential

18

Nested loops: dipole electric potential

» to draw the lines of equipotential, we need to compute
the dipole electric potential at discrete points (x;, y;)

» we can make a grid of equally spaced points using the
meshgrid function

>> [X, Y]
>> [X, Y]

meshgrid(-2:2);
meshgrid(-2:2, 0:4);

19

%% electric dipole potential

% charge 1 (negative)
pl = [-0.995; 0];
ql = -1;

% charge 2 (positive)
p2 = [0.995; 0];
g2 = 1;

% the grid to compute the potential on
[X, Y] = meshgrid([-2:0.01:2]);

% the electric potential
V = zeros(size(X));
for row = 1:size(X, 1)
for col = 1:si1ze(X, 2)
p = [X(row, col); Y(row, col)];
vl = ql /7 norm(p - pl);
v2 = q2 / norm(p - p2);
V(row, col) = vl + v2;
end
end

% show the electric potential

c = -1:0.05:1;
contourf(X, Y, V, ©)

20

	while loop
	while loop
	Slide Number 3
	while loop: infinte loops
	Slide Number 5
	while loop: computing square root
	while loop: computing square root
	Slide Number 8
	while loop: roots of functions
	while loop: Newton's method
	Slide Number 11
	while loop: Newton's method
	while loop: Newton's method
	while loop: Newton's method
	Nested loops
	Slide Number 16
	Nested loops: dipole electric potential
	Nested loops: dipole electric potential
	Nested loops: dipole electric potential
	Slide Number 20

