
while loop 
 a while loop repeats a block of code as long as a 

logical condition is true 
 unlike a for loop 

 there is no loop variable 
 the number of times that the loop runs is not necessarily 

determined ahead of time  

1 



while loop 
 

 

 

while 

 

 

 

 

 

end 

2 

loop body: a sequence of 
MATLAB statements 

if logical_condition is true 
then the loop body is run once logical_condition 

after the loop body is run, the 
loop restarts by checking the 
logical_condition 



3 

% repeat a loop until the user inputs 'y' 

 

repeat = 1; 

while (repeat) 

  % 

  % some code here that you want to repeat 

  % 

 

  % ask the user if they want to repeat again 

  answer = input('Continue? (y / n)'); 

  repeat = strcmp(answer, 'y'); 

end 

 



while loop: infinte loops 
 observe that it is very easy to create an infinite loop 

using a while loop  
 you must ensure that whatever happens in the loop body 

eventually causes the logical condition to become false 
 

 if you encounter an infinite loop in your program you 
can press Ctrl + c to stop your program 
 unfortunately this stops your entire program and not just 

your loop 

4 



5 

% infinite loop example 

 

repeat = 1; 

while (repeat) 

  % 

  % some code here that you want to repeat 

  % 

 

  % ask the user if they want to repeat again 

  answer = input('Continue? (y / n)'); 

 

  % comment out next line 

  % repeat = strcmp(answer, 'y'); 

end 

 



while loop: computing square root 
 Hero's method 
 named after Hero of Alexandria (1st century Greek 

mathematician) 
 to compute the square root of 𝑠 
1. choose a starting value 𝑥0 
2. let 𝑥1 be the average of 𝑥0 and 𝑠/𝑥0 
3. let 𝑥2 be the average of 𝑥1 and 𝑠/𝑥1 
4. let 𝑥3 be the average of 𝑥2 and 𝑠/𝑥2, and so on 

 
 how do you know when to stop? 

 
6 



while loop: computing square root 
 Hero's method can be described mathematically as 

7 

𝑥0 ≈ 𝑠 

𝑥𝑖+1 =
1
2

𝑥𝑖 +
𝑠
𝑥𝑖

 

𝑠 = lim
𝑖→∞

𝑥𝑖 



8 

% compute the square root of s 

 

epsilon = 1e-9; 

delta = Inf; 

x = 0.5 * x; 

while abs(delta) > epsilon 

  xi = mean([x, s / x]); 

  delta = xi – x; 

  x = xi; 

end 

 



while loop: roots of functions 
 Hero's method is a special case of Newton's method 

for finding roots of a real-valued function 
 given a real-valued function 

 
 
find  

9 

𝑓 𝑥  

𝑥 such that 𝑓 𝑥 = 0 



while loop: Newton's method 
 Newton's method can be described as 

 
1. start with an initial estimate of the root 𝑥0 
2.  𝑖 = 0 
3. while 𝑓 𝑥𝑖 > 𝜖 

 𝑥𝑖+1 = 𝑥𝑖 −
𝑓 𝑥𝑖
𝑓′ 𝑥𝑖

  

 𝑖 = 𝑖 + 1 

10 



11 

function [ root, xvals ] = newton(x0, epsilon) 

%NEWTON Newton's method for x^2 - 1 

%   ROOT = NEWTON(X0, EPSILON) finds a root of f(x) = x^2 - 1 using 

%   Newton's method starting from an initial estimate X0 and a tolerance EPSILON 

% 

%   [ROOT, XVALS] = NEWTON(X0, EPSILON) also returns the iterative estimates 

%   in XVALS 

  

xvals = x0; 

xi = x0; 

while abs(f(xi)) > epsilon 

   xj = xi - f(xi) / fprime(xi); 

   xi = xj; 

   xvals = [xvals xi]; 

end 

root = xi; 

  

end 

  

function [ y ] = f(x) 

y = x * x - 1; 

end 

  

function [ yprime ] = fprime(x) 

yprime = 2 * x; 

end 
 

local function: usable only inside 
newton.m  

local function: usable only inside 
newton.m  



while loop: Newton's method 
 what happens if you call Newton's method with: 
 𝑥0 = 1 
 𝑥0 = −1 
 𝑥0 = 2 
 𝑥0 = −2 
 𝑥0 = 100 
 𝑥0 = −100 
 𝑥0 = 0 
 𝑥0 = 1𝑒 − 6 

 
 
 

12 



while loop: Newton's method 
 the main idea in Newton's method 
 we cannot easily find a root of 𝑓(𝑥) 
 we can approximate 𝑓(𝑥) around 𝑥𝑖 by using the tangent 

line at 𝑥𝑖 
 we can easily compute the root of the tangent line as the x-

intercept of the tangent line 
 we can use the root of the tangent line as an improved 

estimate of the root of 𝑓(𝑥) 
 

13 



while loop: Newton's method 
 the main idea in Newton's method 
 we cannot easily find a root of 𝑓(𝑥) 
 we can approximate 𝑓(𝑥) around 𝑥𝑖 by using the tangent 

line at 𝑥𝑖 
 we can easily compute the root of the tangent line as the x-

intercept of the tangent line 
 we can use the root of the tangent line as an improved 

estimate of the root of 𝑓(𝑥) 
 

 see plotnewton.m  

14 



Nested loops 
 a nested loop is a loop inside a loop 
 often encountered when working with arrays of values 
 consider matrix-vector multiplication 

 
 
 
 
 

 to compute 𝑏 we need to compute 𝑚 × 𝑛 
multiplications 

15 

𝐴𝐴 = 𝑏 
𝐴(1, 1) 𝐴(1, 2)
𝐴(2, 1) 𝐴(2, 2) ⋯ 𝐴(1, 𝑛)

𝐴(2, 𝑛)
⋮ ⋱ ⋮

𝐴(𝑚, 1) 𝐴(𝑚, 2) ⋯ 𝐴(𝑚, 𝑛)

𝑥(1)
𝑥(2)
⋮

𝑥(𝑚)

=

𝑏(1)
𝑏(2)
⋮

𝑏(𝑚)

 



16 

% for some (m x n) matrix A and (n x 1) vector x 

 

[m, n] = size(A); 

 

b = zeros(m, 1); 

for row = 1:m 

  for col = 1:n 

    b(row) = b(row) + A(row, col) * x(col); 

  end 

end 

 



Nested loops: dipole electric potential 
 the dipole electric potential at some point 𝑝 is 

proportional to: 

17 

+ - 

r- 
r+ 

p 

𝑉 ∝
𝑞+
𝑟+

+
𝑞−
𝑟−

 



Nested loops: dipole electric potential 
 the lines of equipotential 

18 



Nested loops: dipole electric potential 
 to draw the lines of equipotential, we need to compute 

the dipole electric potential at discrete points 𝑥𝑖, 𝑦𝑖  
 we can make a grid of equally spaced points using the 
meshgrid function 
 

>> [X, Y] = meshgrid(-2:2); 

>> [X, Y] = meshgrid(-2:2, 0:4); 

 

19 



20 

%% electric dipole potential 

  

% charge 1 (negative) 

p1 = [-0.995; 0]; 

q1 = -1; 

  

% charge 2 (positive) 

p2 = [0.995; 0]; 

q2 = 1; 

  

% the grid to compute the potential on 

[X, Y] = meshgrid([-2:0.01:2]); 

  

% the electric potential 

V = zeros(size(X)); 

for row = 1:size(X, 1) 

    for col = 1:size(X, 2) 

        p = [X(row, col); Y(row, col)]; 

        v1 = q1 / norm(p - p1); 

        v2 = q2 / norm(p - p2); 

        V(row, col) = v1 + v2; 

    end 

end 

  

% show the electric potential 

c = -1:0.05:1; 

contourf(X, Y, V, c) 

 


	while loop
	while loop
	Slide Number 3
	while loop: infinte loops
	Slide Number 5
	while loop: computing square root
	while loop: computing square root
	Slide Number 8
	while loop: roots of functions
	while loop: Newton's method
	Slide Number 11
	while loop: Newton's method
	while loop: Newton's method
	while loop: Newton's method
	Nested loops
	Slide Number 16
	Nested loops: dipole electric potential
	Nested loops: dipole electric potential
	Nested loops: dipole electric potential
	Slide Number 20

