Basic MATLAB continued; Using functions

Variable names

valid variable names	invalid variable names	reason invalid
x	\$	does not begin with a letter\$ is not allowed in variable names
x 6	бx	• does not begin with a letter
lastValue	if	• if is a keyword
pi_over_2	pi/2	• / is not allowed in variable names

Advice on choosing variable names

- use short, meaningful names
 - ▶ a name that conveys the purpose of the variable is often useful for others who need need to read your code, e.g., use

${ t massEarth}$	instead of	mE
massSun	instead of	mS

- exceptions to the rule:
 - if you are solving a problem that contains variable names, you should try to use the same names, e.g., in physics the following would likely be common:

```
g, c, v0, h, hBar
```

Advice on choosing variable names

use lowerCamelCase for most variable names, e.g., use

thetaRad instead of thetarad

avoid long names, e.g., use

filteredData instead of
 measurementsFilteredToRemoveOutliers

Advice on choosing variable names

- be careful when using i and j as variable names
 - ▶ i and j are often used as loop variables (see Week o6)
 - ▶ in MATLAB i and j are actually names of functions that return the square root of -1

More on variable assignment

remember that the statement:

$$z = 1 + 2$$

means:

- evaluate the expression on the right-hand side of =
- 2. store the result in the variable on the left-hand size of =

More on variable assignment

what is the result of the following assignment statements?

▶ is the value of **z** 3 or **4**?

More on variable assignment

the statement:

$$y = z$$

means:

- evaluate the expression on the right-hand side of =
- 2. store the result in the variable on the left-hand size of =

Operator precedence

 all operators in MATLAB follow a set of precedence rules ("order of operations")

operator	name	precedence
()	parentheses	highest
^	exponentiation	
-	negation	
*, /, \	multiplication and division	
+, -	addition and subtraction	lowest

Logical expressions and operators

- the textbook introduces relational and logical expressions and operators in Chapter 1
 - these are expressions and operators involving the valuestrue and false
- the relational operators are:

operator	name
>	greater than
>=	greater than or equal to
<	less than
<=	less than or equal to
==	equal to
~=	not equal to

Logical expressions and operators

the logical operators are:

operator	name
&&	and
11	or
~	not

logical expressions and operators are not useful us until Week o5

Functions

- most MATLAB is provided through functions
- a function in MATLAB accepts a set of inputs and (usually) calculates a set of outputs
 - ▶ there can be 0 or more inputs
 - ▶ there can be 0 or more outputs
- the user of the function provides the inputs
 - the input values are called arguments to the function
- the function provides the outputs
- the user uses the name of the function to use the function
 - we say that the user *calls* the function

Functions

you can find the names of elementary mathematical functions using the following command:

```
>> help elfun
```

- this produces a long list of functions...
 - try it in MATLAB if you missed this lecture; the list doesn't fit on a lecture slide
- you can also use Help browser:

>> doc elfun

Rounding functions

```
Rounding and remainder.
```

```
    fix - Round towards zero.
    floor - Round towards minus infinity.
    ceil - Round towards plus infinity.
    round - Round towards nearest integer.
    mod - Modulus (signed remainder after division).
    rem - Remainder after division.
    sign - Signum.
```

Rounding functions

round rounds the input value to the nearest integer and returns the rounded value

```
>> x = round(2.9)

call the function round with
the argument 2.9

x =
3
```

try other input values; use help round or doc round for information about the function

Rounding functions

- ceil, fix, and floor also round but in a different way
 - try them out to see the differences
 - use **help** or **doc** for more information

Trigonometric functions

- there are many trigonometric functions
- **cos**, **sin**, and **tan** compute the cosine, sine, and tangent of the input value *in radians*

```
>> y = cos(pi)
```

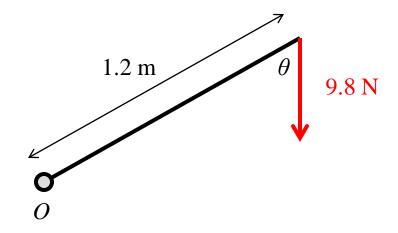
call the function **cos** with the argument **pi**

```
y =
```

-1

Trigonometric functions

cosd, sind, and tand compute the cosine, sine, and tangent of the input value in degrees


```
>> y = sind(90)
y =
```

call the function **sind** with the argument **90**

what is the value of tand(90)?

Trigonometric functions

• calculate the magnitude of the torque about *O* when $\theta = 60^{\circ}$

Functions with multiple inputs

- a MATLAB function can have multiple inputs
- to call a function with multiple inputs, supply the arguments separated by commas
- consider the plot function which can be called with 1,
 or more arguments
 - >> help plot

Functions with multiple inputs

```
>> x = -180:5:180;
>> y = sind(x);
>> plot(y);
>> plot(x, y);
>> plot(x, y, 'r.');
>> plot(x, y, 'r.', x, cosd(x), 'b:');
>> line(xlim, [0 0]);
>> line([0 0], ylim);
try this in MATLAB to see what the different versions of plot do
```

Function with multiple outputs

- many MATLAB functions have multiple outputs
- to store the multiple outputs, assign the outputs to a vector of comma separated variable names

>> help sort

Functions with multiple outputs

```
>> x = [2 5 4 1 3];

>> y = sort(x);

>> [y, idx] = sort(x)

>> [y, idx] = sort(x, 2, 'descend')
```