
Summary

1

Major Topics

1. static features (utility classes)

2. non-static features

3. mixing static and non-static features

4. aggregation and composition

5. inheritance

6. graphical user interfaces

7. recursion

8. data structures

2

Inheritance

� means

is-a

or

is-substitutable-for

3

4

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog

PureBreed is-a Object

Komondor is-a PureBreed

Komondor is-a Dog

Komondor is-a Object

What is a Subclass?

� a subclass looks like a new class that has the same API
as its superclass with perhaps some additional
methods and attributes

� inheritance does more than copy the API of the
superclass

� the derived class contains a subobject of the parent class

� the superclass subobject needs to be constructed (just like a
regular object)

� the mechanism to perform the construction of the superclass
subobject is to call the superclass constructor

5

6

Mix object

Dog object

Object object

size 1

energy 10

breeds 1000

Mix mutt = new Mix(1, 10);

1. Mix constructor starts running

• creates new Dog subobject by invoking

the Dog constructor

2. Dog constructor starts running

• creates new Object subobject

by (silently) invoking the
Object constructor

3. Object constructor runs

• sets size and energy

• creates a new empty ArrayList and

assigns it to breeds

Strength of a Precondition

� to strengthen a precondition means to make the
precondition more restrictive

// Dog setEnergy

// 1. no precondition

// 2. 1 <= energy

// 3. 1 <= energy <= 10

public void setEnergy(int energy)

{ ... }

7

weakest precondition

strongest precondition

Preconditions on Overridden Methods

� a subclass can change a precondition on a method but
it must not strengthen the precondition

� a subclass that strengthens a precondition is saying that it
cannot do everything its superclass can do

8

// Dog setEnergy

// assume non-final

// @pre. none

public

void setEnergy(int nrg)

{ // ... }

// Mix setEnergy

// bad : strengthen precond.

// @pre. 1 <= nrg <= 10

public

void setEnergy(int nrg)

{

if (nrg < 1 || nrg > 10)

{ // throws exception }

// ...

}

� client code written for Dogs now fails when given a
Mix

� remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

9

// client code that sets a Dog's energy to zero

public void walk(Dog d)

{

d.setEnergy(0);

}

Strength of a Postcondition

� to strengthen a postcondition means to make the
postcondition more restrictive

// Dog getSize

// 1. no postcondition

// 2. 1 <= this.size

// 3. 1 <= this.size <= 10

public int getSize()

{ ... }

10

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods

� a subclass can change a postcondition on a method but
it must not weaken the postcondition

� a subclass that weakens a postcondition is saying that it
cannot do everything its superclass can do

11

// Dog getSize

//

// @post. 1 <= size <= 10

public

int getSize()

{ // ... }

// Dogzilla getSize

// bad : weaken postcond.

// @post. 1 <= size

public

int getSize()

{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

� client code written for Dogs can now fail when given a
Dogzilla

� remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

12

// client code that assumes Dog size <= 10

public String sizeToString(Dog d)

{

int sz = d.getSize();

String result = "";

if (sz < 4) result = "small";

else if (sz < 7) result = "medium";

else if (sz <= 10) result = "large";

return result;

}

Exceptions and Inheritance

� a method that claims to throw an exception of type X is
allowed to throw any exception type that is a subclass
of X

� this makes sense because exceptions are objects and
subclass objects are substitutable for ancestor classes

// in Dog

public void someDogMethod() throws DogException

{

// can throw a DogException, BadSizeException,

// NoFoodException, or BadDogException

}

13

� a method that overrides a superclass method that
claims to throw an exception of type X must also throw
an exception of type X or a subclass of X

� remember: a subclass promises to do everything its
superclass does; if the superclass method claims to throw an
exception then the subclass must also

// in Mix

@Override

public void someDogMethod() throws DogException

{

// ...

}

14

checked exception

Which are Legal?

� in Mix
@Override

public void someDogMethod() throws BadDogException

@Override

public void someDogMethod() throws Exception

@Override

public void someDogMethod()

@Override

public void someDogMethod()

throws DogException, IllegalArgumentException

15

technically legal, but don't do this

Abstract Classes

� abstract classes appear when there are common
attributes and methods that all subclasses share

� often, only the subclasses will have enough
information to implement the methods

� these methods are marked abstract in the parent class to
indicate that subclasses are responsible for providing the
implementation

16

Static Features and Inheritance

� non-private static attributes are inherited

� but there is still only one copy of the attribute and it is in
the parent class

� non-private static methods are inherited

� but they cannot be overridden, they can only be hidden

17

Interfaces

� in Java an interface is a reference type (similar to a
class)

� an interface says what methods an object must have
and what the methods are supposed to do

� i.e., an interface is an API

� unlike inheritance, a class may implement as many
interfaces as needed

18

Model-View-Controller

� model

� represents state of the application and the rules that govern
access to and updates of state

� view

� presents the user with a sensory (visual, audio, haptic)
representation of the model state

� a user interface element (the user interface for simple
applications)

� controller

� processes and responds to events (such as user actions)
from the view and translates them to model method calls

19

20

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r

actionPerformed

getUserValue

C
a
l
c
M
o
d
e
l

sum

2

1

3

setCalcValue 5

getCalcValue4

Recursion

� a method that calls itself is called a recursive method

� a recursive method solves a problem by repeatedly
reducing the problem so that a base case can be
reached

printIt("*", 5)

printIt("", 4)

**printIt("*", 3)

***printIt("*", 2)

****printIt("*", 1)

*****printIt("*", 0) base case

21

Notice that the number of times
the string is printed decreases
after each recursive call to printIt

Notice that the base case is
eventually reached.

Proving Correctness and Termination

� to show that a recursive method accomplishes its goal
you must prove:

1. that the base case(s) and the recursive calls are correct

2. that the method terminates

22

Proving Correctness

� to prove correctness:

1. prove that each base case is correct

2. assume that the recursive invocation is correct and then
prove that each recursive case is correct

23

Correctness of printItToo

1. (prove the base case) If n == 0 nothing is printed;
thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the string
s exactly(n – 1) times. Then the recursive case
prints the string s exactly(n – 1)+1 = n times;
thus the recursive case is correct.

24

Proving Termination

� to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a
non-negative integer number

2. prove that each recursive invocation has a smaller size
than the original invocation

25

Termination of printIt

1. printIt(s, n) prints n copies of the string s;
define the size of printIt(s, n) to be n

2. The size of the recursive invocation
printIt(s, n-1) is n-1 (by definition) which is
smaller than the original size n.

26

Recurrence Relation

� analyzing the runtime of an algorithm often leads to a
recurrence relation T(n), e.g.,

� T(n) = 2T(n / 2) + O(n)

� T(n) = T(n - 1) + T(n – 2)

� solving the recurrence can sometimes be done by
substitution

27

Solving the Recurrence Relation

T(n) → 2T(n/2) + O(n) T(n) approaches...

≈ 2T(n/2) + n

= 2[2T(n/4) + n/2] + n

= 4T(n/4) + 2n

= 4[2T(n/8) + n/4] + 2n

= 8T(n/8) + 3n

= 8[2T(n/16) + n/8] + 3n

= 16T(n/16) + 4n

= 2
kT(n/2k) + kn

28

Solving the Recurrence Relation

T(n) = 2
kT(n/2k) + kn

� for a list of length 1 we know T(1) = 1

� if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

n/2k = 1 ⇒ 2k = n ⇒ k = log(n)

29

Data Structures

� recursive

� linked list

� binary tree

� stack

� queue

30

Previous written exam question

Suppose that you have a Stack class that has only the
following features:

� the elements are of type int

� a default constructor that creates an empty stack

� a method isEmpty that returns true if the stack is empty

� push and pop methods

Describe how you would write a (static) method that makes a
copy of a stack. A postcondition of your method must be that
the state of the stack when the method finishes is the same as
when the method started. Try to avoid using additional data
structures (such as lists and arrays) if possible. Functional
Java code is not required.

31

Previous written exam question

Suppose that you have a Queue class that has only the
following features:

� the elements are of type int

� a default constructor that creates an empty queue

� a method size that returns the number of elements in the
queue

� enqueue and dequeue methods

Describe how you would write a (static) method that makes a
copy of a queue. A postcondition of your method must be
that the state of the queue when the method finishes is the
same as when the method started. Try to avoid using
additional data structures (such as lists and arrays) if
possible. Functional Java code is not required.

32

