
Recursive Objects (Part 4)

88



Trees

� a tree is a data structure made up of nodes

� each node stores data

� each node has links to zero or more nodes in the next level 
of the tree

� children of the node

� each node has exactly one parent node

� except for the root node

89



90

50

11 6

79

34

886723 3399

131

836



91

50

116

79

34

88 67 2333 99

1 31

83 6



Trees

� the root of the tree is the node that has no parent node

� all algorithms start at the root

92



93

50

11 6

79

34

886723 3399

131

836

root



Trees

� a node without any children is called a leaf

94



95

50

11 6

79

34

886723 3399

131

836

leaf leaf leaf leaf leaf

leaf leaf

leaf



Trees

� the recursive structure of a tree means that every node 
is the root of a tree

96



97

50

11 6

79

34

886723 3399

131

836

subtree



98

50

11 6

79

34

886723 3399

131

836

subtree



99

50

11 6

79

34

886723 3399

131

836

subtree



100

50

11 6

79

34

886723 3399

131

836

subtree



101

50

11 6

79

34

886723 3399

131

836

subtree



Binary Tree

� a binary tree is a tree where each node has at most two 
children

� very common in computer science

� many variations

� traditionally, the children nodes are called the left 
node and the right node

102



50

27 73

8 44 83

73 93

left right



50

27 73

8 44 83

73 93

left right



50

27 73

8 44 83

73 93

right



50

27 73

8 44 83

74 93

left right



Binary Tree Algorithms

� the recursive structure of trees leads naturally to 
recursive algorithms that operate on trees

� for example, suppose that you want to search a binary 
tree for a particular element

107



108

public static <E> boolean contains(E element, Node<E> node) {

if (node == null) {

return false;

}

if (element.equals(node.data)) {

return true;

}

boolean inLeftTree = contains(element, node.left);

if (inLeftTree) {

return true;

}

boolean inRightTree = contains(element, node.right);

return inRightTree;

}



Iteration

� visiting every element of the tree can also be done 
recursively

� 3 possibilities based on when the root is visited

� inorder

� visit left child, then root, then right child

� preorder

� visit root, then left child, then right child

� postorder

� visit left child, then right child, then root

109



50

27 73

8 44 83

74 93

inorder: 8, 27, 44, 50, 73, 74, 83, 93



50

27 73

8 44 83

74 93

preorder: 50, 27, 8, 44, 73, 83, 74, 93



50

27 73

8 44 83

74 93

postorder: 8, 44, 27, 74, 93, 83, 73, 50



Binary Search Trees (BST)

� the tree from the previous slide is a special kind of 
binary tree called a binary search tree

� in a binary search tree:

1. all nodes in the left subtree have data elements that are 
less than the data element of the root node

2. all nodes in the right subtree have data elements that are 
greater than the data element of the root node

3. rules 1 and 2 apply recursively to every subtree

113



50

27 73

8 44 83

74 93

right subtree

left subtree

51

rest of tree
not shown

76



Predecessors and Successors in a BST

� in a BST there is something special about a node's:

� left subtree right-most child

� right subtree left-most child

115



50

27 73

8 44 83

74 93

right subtree

left subtree

rightmost
child

51

leftmost
child

rest of tree
not shown

rightmost child = inorder predecessor

leftmost child = inorder successor

76



Deletion from a BST

� to delete a node in a BST there are 3 cases to consider:

1. deleting a leaf node

2. deleting a node with one child

3. deleting a node with two children

117



Deleting a Leaf Node

� deleting a leaf node is easy because the leaf has no 
children

� simply remove the node from the tree

� e.g., delete 93

118



50

27 73

8 44 83

74 93

51

rest of tree
not shown

76

delete 93



50

27 73

8 44 83

74

51

rest of tree
not shown

76



Deleting a Node with One Child

� deleting a node with one child is also easy because of 
the structure of the BST

� remove the node by replacing it with its child

� e.g., delete 83

121



50

27 73

8 44 83

74

51

rest of tree
not shown

76

delete 83



50

27 73

8 44 7451

rest of tree
not shown

76



Deleting a Node with Two Children

� deleting a node with two children is a little trickier

� call the node to be deleted Z

� find the inorder predecessor OR the inorder successor

� call this node Y

� if the inorder predecessor does not exist, then you must find the 
inorder successor (and vice versa)

� copy the data element of Y into the data element of Z

� delete Y

� e.g., delete 50

124



50

27 73

8 44 7451

rest of tree
not shown

76

delete 50



50

27 73

8 44 7451

rest of tree
not shown

76

Z

Y

inorder
successor

to Z



51

27 73

8 44 7451

rest of tree
not shown

76

Z

Y

inorder
successor

to Z

copy Y data to Z data



51

27 73

8 44 7451

rest of tree
not shown

76

Z

Y

delete Y



51

27 73

8 44 74

rest of tree
not shown

76


