Recursion

Printing n of Something

- suppose you want to implement a method that prints out n copies of a string

```
public static void printIt(String s, int n) {
    for(int i = 0; i < n; i++) {
        System.out.print(s);
    }
}
```


A Different Solution

- alternatively we can use the following algorithm:

1. if $\mathrm{n}==\mathrm{o}$ done, otherwise
I. print the string once
II. print the string ($\mathrm{n}-1$) more times
```
public static void printItToo(String s, int n) {
    if (n == 0) {
        return;
    }
    else {
        System.out.print(s);
        printItToo(s, n - 1); // method invokes itself
    }
}
```


Recursion

- a method that calls itself is called a recursive method
- a recursive method solves a problem by repeatedly reducing the problem so that a base case can be reached

```
printItToo("*", 5)
*printItToo ("*", 4)
**printItToo ("*", 3)
    the string is printed decreases
***printItToo ("*", 2) after each recursive call to printIt
****printItToo ("*", 1)
*****printItToo ("*", 0) base case Notice that the base case is
*****

\section*{Infinite Recursion}
- if the base case(s) is missing, or never reached, a recursive method will run forever (or until the computer runs out of resources)
```

public static void printItForever(String s, int n) {
// missing base case; infinite recursion
System.out.print(s);
printItForever(s, n - 1);
}
printItForever("*", 1)
* printItForever("*", 0)
** printItForever("*", -1)
*** printItForever("*", -2)

```

\section*{Climbing a Flight of \(n\) Stairs}
- not Java
climb(n) :
if \(\mathrm{n}=0\)
done
else
step up 1 stair
climb (n - 1);
end

\section*{Rabbits}

Month o: 1 pair
o additional pairs


Month 1: first pair makes another pair


Month 2: each pair 1 additional pair makes another pair; oldest pair dies


\section*{Fibonacci Numbers}
- the sequence of additional pairs
- \(0,1,1,2,3,5,8,13, \ldots\) are called Fibonacci numbers
- base cases
- \(F(0)=0\)
- \(F(1)=1\)
- recursive definition
- \(F(n)=F(n-1)+F(n-2)\)

\section*{Recursive Methods \& Return Values}
- a recursive method can return a value
- example: compute the nth Fibonacci number
```

public static int fibonacci(int n) {
if (n == 0) {
return 0;
}
else if (n == 1) {
return 1;
}
else {
int f = fibonacci(n - 1) + fibonacci(n - 2);
return f;
}
}

```

\section*{Recursive Methods \& Return Values}
- example: write a recursive method countZeros that counts the number of zeros in an integer number \(\mathbf{n}\)
- 10305060700002L has 8 zeros
- trick: examine the following sequence of numbers
1. 10305060700002
2. 1030506070000
3. 103050607000
4. 10305060700
5. 103050607
6. 1030506 ...

\section*{Recursive Methods \& Return Values}
- not Java:
```

countZeros(n) :
if the last digit in n is a zero
return 1 + countZeros(n / 10)
else
return countZeros(n / 10)

```
- don't forget to establish the base case(s)
- when should the recursion stop? when you reach a single digit (not zero digits; you never reach zero digits!)
- base case \#1:n == 0
\(\square\) return 1
- base case \#2:n != 0 \&\& n < 10
\(\square\) return 0
```

public static int countZeros(long n) {
if(n == OL) { // base case 1
return 1;
}
else if(n < 10L) { // base case 2
return 0;
}
boolean lastDigitIsZero = (n % 1OL == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
return 1 + countZeros(m);
}
else {
return countZeros(m);
}
}

```

\section*{countZeros Call Stack} callZeros( 800410L )
\begin{tabular}{ll}
\multicolumn{1}{l}{ last in first out } \\
\begin{tabular}{|l|l}
\hline callZeros ( 8L ) & 0 \\
\hline callZeros ( 80L ) & \(1+0\) \\
\hline callZeros (800L ) & \(1+1+0\) \\
\hline callZeros (8004L) & \(0+1+1+0\) \\
\hline callZeros (80041L ) & \(0+0+1+1+0\) \\
\hline callZeros (800410L) & \(1+0+0+1+1+0\) \\
\hline & \(=3\)
\end{tabular}
\end{tabular}

Fibonacci Call Tree


\section*{Compute Powers of 10}
- write a recursive method that computes \(10^{\mathrm{n}}\) for any integer value \(n\)
- recall:
- \(10^{0}=1\)
- \(10^{\mathrm{n}}=10 * 10^{\mathrm{n}-1}\)
- \(10^{-n}=1 / 10^{n}\)
```

public static double powerOf1O(int n) {
if (n == O) {
// base case
return 1.0;
}
else if (n > 0) {
// recursive call for positive n
return 10.0 * powerOf10(n - 1);
}
else {
// recursive call for negative n
return 1.0 / powerOf10(-n);
}
}

```

\section*{Proving Correctness and Termination}
- to show that a recursive method accomplishes its goal you must prove:
1. that the base case(s) and the recursive calls are correct
2. that the method terminates

\section*{Proving Correctness}
- to prove correctness:
1. prove that each base case is correct
2. assume that the recursive invocation is correct and then prove that each recursive case is correct

\section*{printItToo}
```

public static void printItToo(String s, int n) {
if (n == 0) {
return;
}
else {
System.out.print(s);
printItToo(s, n - 1);
}
}

```

\section*{Correctness of printltToo}
1. (prove the base case) If \(\mathrm{n}=0\) nothing is printed; thus the base case is correct.
2. Assume that printItToo(s, n-1) prints the string s exactly ( \(n-1\) ) times. Then the recursive case prints the string sexactly \((\mathrm{n}-1)+1=n\) times; thus the recursive case is correct.

\section*{Proving Termination}
- to prove that a recursive method terminates:
1. define the size of a method invocation; the size must be a non-negative integer number
2. prove that each recursive invocation has a smaller size than the original invocation

\section*{Termination of printlt}
1. printIt ( \(\mathbf{s}, \mathrm{n}\) ) prints n copies of the string \(\mathbf{s}\); define the size of printIt ( \(s, n\) ) to be \(n\)
2. The size of the recursive invocation printIt (s, \(\mathrm{n}-1\) ) is \(\mathrm{n}-1\) (by definition) which is smaller than the original size \(\mathbf{n}\).

\section*{countZeros}
```

public static int countZeros(long n) {
if(n == OL) { // base case 1
return 1;
}
else if(n < 10L) { // base case 2
return 0;
}
boolean lastDigitIsZero = (n % 1OL == 0);
final long m = n / 10L;
if(lastDigitIsZero) {
return 1 + countZeros(m);
}
else {
return countZeros(m);
}
}

```

\section*{Correctness of countZeros}
1. (base cases) If the number has only one digit then the method returns 1 if the digit is zero and 0 if the digit is not zero; therefore, the base case is correct.
2. (recursive cases) Assume that countZeros ( \(n / 10 L\) ) is correct (it returns the number of zeros in the first ( \(\mathbf{d}-1\) ) digits of \(n\) ). If the last digit in the number is zero, then the recursive case returns \(1+\) the number of zeros in the first ( \(\mathrm{d}-1\) ) digits of \(n\), otherwise it returns the number of zeros in the first \((d-1)\) digits of \(n\); therefore, the recursive cases are correct.

\section*{Termination of countZeros}
1. Let the size of countZeros ( \(n\) ) be \(d\) the number of digits in the number \(n\).
2. The size of the recursive invocation countZeros ( \(n / 10 L\) ) is \(d-1\), which is smaller than the size of the original invocation.

\section*{Decrease and Conquer}
- a common strategy for solving computational problems
- solves a problem by taking the original problem and converting it to one smaller version of the same problem
- note the similarity to recursion
- decrease and conquer, and the closely related divide and conquer method, are widely used in computer science
- allow you to solve certain complex problems easily
- help to discover efficient algorithms

\section*{Root Finding}
- suppose you have a mathematical function \(\mathbf{f}(\mathbf{x})\) and you want to find \(\mathbf{x}_{0}\) such that \(\mathbf{f}\left(\mathbf{x}_{0}\right)=0\)
- why would you want to do this?
- many problems in computer science, science, and engineering reduce to optimization problems
- find the shape of an automobile that minimizes aerodynamic drag
- find an image that is similar to another image (minimize the difference between the images)
- find the sales price of an item that maximizes profit
- if you can write the optimization criteria as a function \(\mathbf{g}(\mathbf{x})\) then its derivative \(\mathbf{f}(\mathbf{x})=\mathrm{dg} / \mathrm{d} \mathbf{x}=0\) at the minimum or maximum of \(g\) (as long as \(g\) has certain properties)

\section*{Bisection Method}
- suppose you can evaluate \(\mathbf{f}(\mathbf{x})\) at two points \(\mathbf{x}=\mathbf{a}\) and \(\mathbf{x}=\mathrm{b}\) such that
- \(\mathrm{f}(\mathrm{a})>0\)
- \(f(b)<0\)


\section*{Bisection Method}
- evaluate \(f(c)\) where \(c\) is halfway between \(a\) and \(b\) - if \(f(c)\) is close enough to zero done


\section*{Bisection Method}
- otherwise cocomes the new end point (in this case, 'minus ') and recursively search the range 'plus' - 'minus'

public class Bisect \{
// the function we want to find the root of public static double \(f(\) double \(x)\) \{
return Math.cos (x);
\}
```

public static double bisect(double xplus, double xminus,
double tolerance) {
// base case
double c = (xplus + xminus) / 2.0;
double fc = f(c);
if(Math.abs(fc) < tolerance) {
return c;
}
else if (fc < 0.0) {
return bisect(xplus, c, tolerance);
}
else {
return bisect(c, xminus, tolerance);
}
}

```
```

 public static void main(String[] args)
    ```
    \{
            System.out.println("bisection returns: " +
                        bisect (1.0, Math.PI, 0.001));
            System.out.println("true answer : "
                        + Math.PI / 2.0);
    \}
\}
prints:
bisection returns: 1.5709519476855602
true answer : 1.5707963267948966

\section*{Divide and Conquer}
- bisection works by recursively finding which half of the range 'plus' - 'minus' the root lies in
- each recursive call solves the same problem (tries to find the root of the function by guessing at the midpoint of the range)
- each recursive call solves one smaller problem because half of the range is discarded
- bisection method is decrease and conquer
- divide and conquer algorithms typically recursively divide a problem into several smaller sub-problems until the sub-problems are small enough that they can be solved directly

\section*{Recursion (Part 2)}

\section*{Solving Recurrence Relations}

\section*{Divide and Conquer}
- bisection works by recursively finding which half of the range 'plus' - 'minus' the root lies in
- each recursive call solves the same problem (tries to find the root of the function by guessing at the midpoint of the range)
- each recursive call solves one smaller problem because half of the range is discarded
- bisection method is decrease and conquer
- divide and conquer algorithms typically recursively divide a problem into several smaller sub-problems until the sub-problems are small enough that they can be solved directly

\section*{Merge Sort}
- merge sort is a divide and conquer algorithm that sorts a list of numbers by recursively splitting the list into two halves

- the split lists are then merged into sorted sub-lists


\section*{Merging Sorted Sub-lists}
- two sub-lists of length 1
\begin{tabular}{cc} 
left & right \\
4 & 3
\end{tabular}
result
\begin{tabular}{|l|l|}
\hline 3 & 4 \\
\hline
\end{tabular}

1 comparison
2 copies
```

int fL = left.getFirst();

```
int fL = left.getFirst();
int fR = right.getFirst();
int fR = right.getFirst();
if (fL < fR) {
if (fL < fR) {
    result.add(fL);
    result.add(fL);
    left.removeFirst();
    left.removeFirst();
}
}
else {
else {
    result.add(fR);
    result.add(fR);
    right.removeFirst();
    right.removeFirst();
}
}
if (left.isEmpty()) {
if (left.isEmpty()) {
    result.addAll(right);
    result.addAll(right);
}
}
else {
else {
    result.addAll(left);
    result.addAll(left);
}
```

}

```
LinkedList<Integer> result = new LinkedList<Integer>();

\section*{Merging Sorted Sub-lists}
- two sub-lists of length 2
\begin{tabular}{|l|l|l|l|}
\multicolumn{1}{c}{ left } & \multicolumn{1}{c}{ right } \\
\hline 3 & 4 & \begin{tabular}{|l|l|}
\hline
\end{tabular} & 2 \\
\hline
\end{tabular}
\begin{tabular}{|l||r||r|}
\multicolumn{3}{c}{ result } \\
\hline 2 & 3 & 4 \\
\hline
\end{tabular}

3 comparisons
4 copies
```

LinkedList<Integer> result = new LinkedList<Integer>();

```
```

while (left.size() > 0 \&\& right.size() > 0) {
int fL = left.getFirst();
int fR = right.getFirst();
if (fL < fR) {
result.add(fL);
left.removeFirst();
}
else {
result.add(fR);
right.removeFirst();
}
}
if (left.isEmpty()) {
result.addAll(right);
}
else {
result.addAll(left);
}

```

\section*{Merging Sorted Sub-lists}
- two sub-lists of length 4


5 comparisons
8 copies

\section*{Simplified Complexity Analysis}
- in the worst case merging a total of \(n\) elements requires
n - 1 comparisons +
\(\mathrm{n} \quad\) copies
\(=2 n-1\) total operations
- we say that the worst-case complexity of merging is the order of \(O(n)\)
- \(O(\ldots)\) is called Big O notation
- notice that we don't care about the constants 2 and 1
- formally, a function \(f(n)\) is an element of \(O(n)\) if and only if there is a positive real number \(M\) and a real number \(m\) such that
\[
|f(n)|<M n \text { for all } n>m
\]
- is \(2 n-1\) an element of \(O(n)\) ?
- yes, let \(M=2\) and \(m=0\), then \(2 n-1<2 n\) for all \(n>0\)

\section*{Informal Analysis of Merge Sort}
- suppose the running time (the number of operations) of merge sort is a function of the number of elements to sort
- let the function be \(T(n)\)
- merge sort works by splitting the list into two sub-lists (each about half the size of the original list) and sorting the sub-lists
- this takes \(2 T(n / 2)\) running time
- then the sub-lists are merged
- this takes \(O(n)\) running time
- total running time \(T(n)=2 T(n / 2)+O(n)\)

\section*{Solving the Recurrence Relation}
\[
\begin{aligned}
T(n) & \rightarrow 2 T(n / 2)+O(n) \\
& \approx 2 T(n / 2)+n \\
& =2[2 T(n / 4)+n / 2]+n \\
& =4 T(n / 4)+2 n \\
& =4[2 T(n / 8)+n / 4]+2 n \\
& =8 T(n / 8)+3 n \\
& =8[2 T(n / 16)+n / 8]+3 n \\
& =16 T(n / 16)+4 n \\
& =2^{k} T\left(n / 2^{k}\right)+k n
\end{aligned}
\]

\section*{Solving the Recurrence Relation \\ \(T(n)=2^{k} T\left(\underline{n / 2^{k}}\right)+k n\)}
- for a list of length 1 we know \(T(1)=1\)
- if we can substitute \(T(1)\) into the right-hand side of \(T(n)\) we might be able to solve the recurrence
\[
n / 2^{k}=1 \Rightarrow 2^{k}=n \Rightarrow k=\log (n)
\]

\section*{Solving the Recurrence Relation}
\[
\begin{aligned}
T(n) & =\quad 2^{\log (n)} T\left(n / 2^{\log (n)}\right)+n \log (n) \\
& =n T(1)+n \log (n) \\
& =n+n \log (n) \\
& \in \quad n \log (n)
\end{aligned}
\]

\section*{Is Merge Sort Efficient?}
- consider a simpler (non-recursive) sorting algorithm called insertion sort
```

// to sort an array a[0]..a[n-1]
not Java!
for i = 0 to (n-1) {
k = index of smallest element in sub-array a[i]..a[n-1]
swap a[i] and a[k]
}

```
```

for i = O to (n-1) {
not Java!
for j = (i+1) to (n-1) i
if (a[j] < a[i]) {
k = j;
}
}
tmp =a[i]; a[i] = a[k]; a[k] = tmp; 3assignments
}

```
51
\[
\begin{aligned}
T(n) & =\sum_{i=0}^{n-1}\left(\left(\sum_{j=(i+1)}^{n-1} 2\right)+3\right) \\
& =\sum_{i=0}^{n-1}(2(n-i-1))+3 n \\
& =2 \sum_{i=0}^{n-1} n-2 \sum_{i=0}^{n-1} i-2 \sum_{i=0}^{n-1} 1+3 n \\
= & 2 n^{2}-2 \frac{n(n-1)}{2}-2 n+3 n \\
= & 2 n^{2}-n^{2}+n-2 n+3 n \\
=n^{2} & +2 n \in O\left(n^{2}\right)
\end{aligned}
\]

\section*{Comparing Rates of Growth}


\section*{Comments}
- big O complexity tells you something about the running time of an algorithm as the size of the input, \(n\), approaches infinity
- we say that it describes the limiting, or asymptotic, running time of an algorithm
- for small values of \(n\) it is often the case that a less efficient algorithm (in terms of big O ) will run faster than a more efficient one
- insertion sort is typically faster than merge sort for short lists of numbers

\section*{Revisiting the Fibonacci Numbers}
- the recursive implementation based on the definition of the Fibonacci numbers is inefficient
```

public static int fibonacci(int n) {
if (n == 0) {
return 0;
}
else if (n == 1) {
return 1;
}
int f = fibonacci(n - 1) + fibonacci(n - 2);
return f;
}

```
- how inefficient is it?
- let \(T(n)\) be the running time to compute the \(n\)th Fibonacci number
- \(T(0)=T(1)=1\)
- \(T(n)\) is a recurrence relation
\[
\begin{aligned}
T(n) & \rightarrow T(n-1)+T(n-2) \\
& =(T(n-2)+T(n-3))+T(n-2) \\
& =2 T(n-2)+T(n-3) \\
& >2 T(n-2) \\
& >2(2 T(n-4))=4 T(n-4) \\
& >4(2 T(n-6))=8 T(n-6) \\
& >8(2 T(n-8))=16 T(n-8) \\
& >2^{k} T(n-2 k)
\end{aligned}
\]

\section*{Solving the Recurrence Relation}
\[
T(n)>\quad 2^{k} T(\underline{n-2 k})
\]
- we know \(T(1)=1\)
- if we can substitute \(T(1)\) into the right-hand side of \(T(n)\) we might be able to solve the recurrence
\[
\underline{n-2 k}=1 \Rightarrow 1+2 k=n \Rightarrow k=(\mathrm{n}-1) / 2
\]
\[
T(n)>2^{k} T(n-2 k)=2^{(n-1) / 2} T(1)=2^{(n-1) / 2} \in O\left(2^{n}\right)
\]

\section*{An Efficient Fibonacci Algorithm}
- an \(O(n)\) algorithm exists that computes all of the Fibonacci numbers from \(f(0)\) to \(f(n)\)

```

- create an array of length $(n+1)$ and sequentially fill in the array values
- $O(n)$

```
```

// pre. n >= 0
public static int[] fibonacci(int n) {
int[] f = new int[n + 1];
f[0] = 0;
f[1] = 1;
for (int i = 2; i < n + 1; i++) {
f[i] = f[i - 1] + f[i - 2];
}
return f;
}

```

\section*{Closing Question}
- the recursive Fibonacci and merge sort algorithms can be illustrated using a call tree
- merge sort is actually 2 trees; one to split and one to merge
- why is the Fibonacci algorithm \(O\left(2^{n}\right)\) and merge sort \(O(n \log n)\) ?```

