
Recursion

notes Chapter 8

1



Printing n of Something

� suppose you want to implement a method that prints 
out n copies of a string

public static void printIt(String s, int n) {

for(int i = 0; i < n; i++) {

System.out.print(s);

}

}
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A Different Solution

� alternatively we can use the following algorithm:

1. if n == 0 done, otherwise

I. print the string once

II. print the string (n – 1) more times

public static void printItToo(String s, int n) {

if (n == 0) {

return;

}

else {

System.out.print(s);

printItToo(s, n - 1);    // method invokes itself

}

}
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Recursion

� a method that calls itself is called a recursive method

� a recursive method solves a problem by repeatedly 
reducing the problem so that a base case can be 
reached

printItToo("*", 5)

*printItToo ("*", 4)

**printItToo ("*", 3)

***printItToo ("*", 2)

****printItToo ("*", 1)

*****printItToo ("*", 0) base case

*****
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Notice that the number of times
the string is printed decreases
after each recursive call to printIt

Notice that the base case is
eventually reached.



Infinite Recursion

� if the base case(s) is missing, or never reached, a 
recursive method will run forever (or until the 
computer runs out of resources)

public static void printItForever(String s, int n) {

// missing base case; infinite recursion

System.out.print(s);

printItForever(s, n - 1);

}

printItForever("*", 1)

* printItForever("*", 0)

** printItForever("*", -1)

*** printItForever("*", -2) ...........
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Climbing a Flight of n Stairs

� not Java

climb(n) :

if n == 0

done

else

step up 1 stair

climb(n – 1);

end
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Rabbits
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Month 0: 1 pair 0 additional pairs

Month 1: first pair
makes another pair

1 additional pair

Month 2: each pair
makes another pair;
oldest pair dies

1 additional pair

Month 3: each pair
makes another pair;
oldest pair dies

2 additional pairs



Fibonacci Numbers

� the sequence of additional pairs
� 0, 1, 1, 2, 3, 5, 8, 13, ...

are called Fibonacci numbers

� base cases
� F(0) = 0

� F(1) = 1

� recursive definition
� F(n) = F(n – 1) +  F(n – 2)
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Recursive Methods & Return Values

� a recursive method can return a value

� example: compute the nth Fibonacci number

public static int fibonacci(int n) {

if (n == 0) {

return 0;

}

else if (n == 1) {

return 1;

}

else {

int f = fibonacci(n - 1) + fibonacci(n - 2);

return f;

}

}
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Recursive Methods & Return Values

� example: write a recursive method countZeros that 
counts the number of zeros in an integer number n

� 10305060700002L has 8 zeros

� trick: examine the following sequence of numbers
1. 10305060700002

2. 1030506070000

3. 103050607000

4. 10305060700

5. 103050607

6. 1030506 ...
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Recursive Methods & Return Values

� not Java:

countZeros(n) :

if the last digit in n is a zero

return 1 + countZeros(n / 10)

else

return countZeros(n / 10)
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� don't forget to establish the base case(s)

� when should the recursion stop? when you reach a single 
digit (not zero digits; you never reach zero digits!)
� base case #1 : n == 0

� return 1

� base case #2 : n != 0 && n < 10

� return 0
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public static int countZeros(long n) {

if(n == 0L) {  // base case 1

return 1;

}

else if(n < 10L) {  // base case 2

return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);

final long m = n / 10L;

if(lastDigitIsZero) {

return 1 + countZeros(m);

}

else {

return countZeros(m);

}

}
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countZeros Call Stack

callZeros( 800410L )
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callZeros( 800410L )

callZeros( 80041L )

callZeros( 8004L )

callZeros( 800L )

callZeros( 80L )

callZeros( 8L )

1 + 0 + 0 + 1 + 1 + 0

0 + 0 + 1 + 1 + 0

0 + 1 + 1 + 0

1 + 1 + 0

1 + 0

0

= 3

last in first out



Fibonacci Call Tree
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Compute Powers of 10

� write a recursive method that computes 10n for any 
integer value n

� recall:
� 100 = 1

� 10n = 10 * 10n-1

� 10-n = 1 / 10n
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public static double powerOf10(int n) {

if (n == 0) {

// base case

return 1.0;

}

else if (n > 0) {

// recursive call for positive n

return 10.0 * powerOf10(n - 1);

}

else {

// recursive call for negative n

return 1.0 / powerOf10(-n);

}

}

17



Proving Correctness and Termination

� to show that a recursive method accomplishes its goal 
you must prove:

1. that the base case(s) and the recursive calls are correct

2. that the method terminates
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Proving Correctness

� to prove correctness:

1. prove that each base case is correct

2. assume that the recursive invocation is correct and then 
prove that each recursive case is correct
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printItToo

public static void printItToo(String s, int n) {

if (n == 0) {

return;

}

else {

System.out.print(s);

printItToo(s, n - 1);

}

}
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Correctness of printItToo

1. (prove the base case) If n == 0 nothing is printed; 
thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the string 
s exactly(n – 1) times. Then the recursive case 
prints the string s exactly(n – 1)+1 = n times; 
thus the recursive case is correct.
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Proving Termination

� to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a 
non-negative integer number

2. prove that each recursive invocation has a smaller size 
than the original invocation
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Termination of printIt

1. printIt(s, n) prints n copies of the string s; 
define the size of printIt(s, n) to be n

2. The size of the recursive invocation
printIt(s, n-1) is n-1 (by definition) which is 
smaller than the original size n.
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countZeros
public static int countZeros(long n) {

if(n == 0L) {  // base case 1

return 1;

}

else if(n < 10L) {  // base case 2

return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);

final long m = n / 10L;

if(lastDigitIsZero) {

return 1 + countZeros(m);

}

else {

return countZeros(m);

}

}
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Correctness of countZeros

1. (base cases) If the number has only one digit then 
the method returns 1 if the digit is zero and 0 if the 
digit is not zero; therefore, the base case is correct.

2. (recursive cases)  Assume that 
countZeros(n/10L) is correct (it returns the 
number of zeros in the first (d – 1) digits of n). If 
the last digit in the number is zero, then the 
recursive case returns 1 + the number of zeros in 
the first (d – 1) digits of n, otherwise it returns 
the number of zeros in the first (d – 1) digits of n; 
therefore, the recursive cases are correct.
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Termination of countZeros

1. Let the size of countZeros(n) be d the number of 
digits in the number n.

2. The size of the recursive invocation 
countZeros(n/10L) is d-1, which is smaller than 
the size of the original invocation.
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Decrease and Conquer

� a common strategy for solving computational 
problems

� solves a problem by taking the original problem and 
converting it to one smaller version of the same problem

� note the similarity to recursion

� decrease and conquer, and the closely related divide 
and conquer method, are widely used in computer 
science

� allow you to solve certain complex problems easily

� help to discover efficient algorithms
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Root Finding

� suppose you have a mathematical function f(x) and 
you want to find x0 such that f(x0) = 0

� why would you want to do this?

� many problems in computer science, science, and 
engineering reduce to optimization problems

� find the shape of an automobile that minimizes aerodynamic drag

� find an image that is similar to another image (minimize the 
difference between the images)

� find the sales price of an item that maximizes profit

� if you can write the optimization criteria as a function g(x)
then its derivative f(x) = dg/dx = 0 at the minimum 
or maximum of g (as long as g has certain properties)
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Bisection Method

� suppose you can evaluate f(x) at two points x = a
and x = b such that

� f(a) > 0

� f(b) < 0

29

x

f(x)

f(a)

f(b)

'plus'

'minus'



Bisection Method

� evaluate f(c) where c is halfway between a and b

� if f(c) is close enough to zero done
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Bisection Method

� otherwise c becomes the new end point (in this case, 
'minus') and recursively search the range 
'plus' – 'minus'
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public class Bisect {

// the function we want to find the root of

public static double f(double x) {

return Math.cos(x);

}
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public static double bisect(double xplus, double xminus,

double tolerance) {

// base case

double c = (xplus + xminus) / 2.0;

double fc = f(c);

if( Math.abs(fc) < tolerance ) {

return c;

}

else if (fc < 0.0) {

return bisect(xplus, c, tolerance);

}

else {

return bisect(c, xminus, tolerance);

}

}
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public static void main(String[] args)

{

System.out.println("bisection returns: " + 

bisect(1.0, Math.PI, 0.001));

System.out.println("true answer      : " 

+ Math.PI / 2.0);

}

}

prints:

bisection returns: 1.5709519476855602

true answer      : 1.5707963267948966
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Divide and Conquer

� bisection works by recursively finding which half of 
the range 'plus' – 'minus' the root lies in

� each recursive call solves the same problem (tries to find 
the root of the function by guessing at the midpoint of the 
range)

� each recursive call solves one smaller problem because half 
of the range is discarded

� bisection method is decrease and conquer

� divide and conquer algorithms typically recursively 
divide a problem into several smaller sub-problems 
until the sub-problems are small enough that they can 
be solved directly
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Recursion (Part 2)

Solving Recurrence Relations
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Divide and Conquer

� bisection works by recursively finding which half of 
the range 'plus' – 'minus' the root lies in

� each recursive call solves the same problem (tries to find 
the root of the function by guessing at the midpoint of the 
range)

� each recursive call solves one smaller problem because half 
of the range is discarded

� bisection method is decrease and conquer

� divide and conquer algorithms typically recursively 
divide a problem into several smaller sub-problems 
until the sub-problems are small enough that they can 
be solved directly
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Merge Sort

� merge sort is a divide and conquer algorithm that sorts 
a list of numbers by recursively splitting the list into 
two halves
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12 74 5 63 8

17 6824 53

254 3 1678

4 3 25 78 16



� the split lists are then merged into sorted sub-lists
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4 3 25 78 16

523 4 6187

86 7152 43

84 61 3 72 5



Merging Sorted Sub-lists

� two sub-lists of length 1
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4 3

left right

result

3 4

1 comparison
2 copies
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LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}



Merging Sorted Sub-lists

� two sub-lists of length 2
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43

left right

result

3 4

3 comparisons
4 copies

52

2 5
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LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0 ) {

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}



Merging Sorted Sub-lists

� two sub-lists of length 4
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left right

result

5 comparisons
8 copies

86 7152 43

84 61 3 72 5



Simplified Complexity Analysis

� in the worst case merging a total of n elements 
requires
n – 1 comparisons  +

n copies

= 2n – 1 total operations

� we say that the worst-case complexity of merging is 
the order of O(n)

� O(...) is called Big O notation

� notice that we don't care about the constants 2 and 1
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� formally, a function f(n) is an element of O(n) if and 
only if there is a positive real number M and a real 
number m such that

| f(n) | < Mn for all  n > m

� is 2n – 1 an element of O(n)?

� yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0
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Informal Analysis of Merge Sort

� suppose the running time (the number of operations) 
of merge sort is a function of the number of elements 
to sort

� let the function be T(n)

� merge sort works by splitting the list into two sub-lists 
(each about half the size of the original list) and 
sorting the sub-lists
� this takes  2T(n/2) running time

� then the sub-lists are merged

� this takes O(n) running time

� total running time T(n) = 2T(n/2) + O(n)
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Solving the Recurrence Relation

T(n) → 2T(n/2) + O(n) T(n) approaches...

≈ 2T(n/2) + n

= 2[ 2T(n/4) + n/2 ] + n

= 4T(n/4) + 2n

= 4[ 2T(n/8) + n/4 ] + 2n

= 8T(n/8) + 3n

= 8[ 2T(n/16) + n/8 ] + 3n

= 16T(n/16) + 4n

= 2
kT(n/2k) + kn
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Solving the Recurrence Relation

T(n) = 2
kT(n/2k) + kn

� for a list of length 1 we know T(1) = 1

� if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence

n/2k = 1 ⇒ 2k = n ⇒ k = log(n)
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Solving the Recurrence Relation

T(n) = 2log(n)T(n/2log(n)) + n log(n)

= n T(1) + n log(n)

= n + n log(n)

∈ n log(n)

50



Is Merge Sort Efficient?

� consider a simpler (non-recursive) sorting algorithm 
called insertion sort
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// to sort an array a[0]..a[n-1] not Java!

for i = 0 to (n-1) {

k = index of smallest element in sub-array a[i]..a[n-1]

swap a[i] and a[k]

}

for i = 0 to (n-1) {                            not Java!

for j = (i+1) to (n-1) {

if (a[j] < a[i]) {

k = j;

}

}

tmp = a[i];   a[i] = a[k];   a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments



T(n) 
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Comparing Rates of Growth
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O(n)

O(n logn)

O(n2)O(2n)

n



Comments

� big O complexity tells you something about the 
running time of an algorithm as the size of the input, 
n, approaches infinity

� we say that it describes the limiting, or asymptotic, running 
time of an algorithm

� for small values of n it is often the case that a less 
efficient algorithm (in terms of big O) will run faster 
than a more efficient one

� insertion sort is typically faster than merge sort for short 
lists of numbers
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Revisiting the Fibonacci Numbers

� the recursive implementation based on the definition 
of the Fibonacci numbers is inefficient

public static int fibonacci(int n) {

if (n == 0) {

return 0;

}

else if (n == 1) {

return 1;

}

int f = fibonacci(n - 1) + fibonacci(n - 2);

return f;

}
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� how inefficient is it?

� let T(n) be the running time to compute the nth 
Fibonacci number

� T(0) = T(1) = 1

� T(n) is a recurrence relation
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T(n)
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Solving the Recurrence Relation

T(n) > 2
kT(n - 2k)

� we know T(1) = 1

� if we can substitute T(1) into the right-hand side of T(n) we 
might be able to solve the recurrence

n - 2k = 1 ⇒ 1 + 2k = n ⇒ k = (n – 1)/2
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An Efficient Fibonacci Algorithm

� an O(n) algorithm exists that computes all of the 
Fibonacci numbers from f(0) to f(n)
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� create an array of length (n + 1) and sequentially fill in 
the array values

� O(n)

// pre. n >= 0

public static int[] fibonacci(int n) {

int[] f = new int[n + 1];

f[0] = 0;

f[1] = 1;

for (int i = 2; i < n + 1; i++) {

f[i] = f[i - 1] + f[i - 2];

}

return f;

}
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Closing Question

� the recursive Fibonacci and merge sort algorithms can 
be illustrated using a call tree

� merge sort is actually 2 trees; one to split and one to merge

� why is the Fibonacci algorithm O(2n) and merge sort 
O(n logn)?
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