
Recursion

notes Chapter 8

1

Printing n of Something

� suppose you want to implement a method that prints
out n copies of a string

public static void printIt(String s, int n) {

for(int i = 0; i < n; i++) {

System.out.print(s);

}

}

2

A Different Solution

� alternatively we can use the following algorithm:

1. if n == 0 done, otherwise

I. print the string once

II. print the string (n – 1) more times

public static void printItToo(String s, int n) {

if (n == 0) {

return;

}

else {

System.out.print(s);

printItToo(s, n - 1); // method invokes itself

}

}

3

Recursion

� a method that calls itself is called a recursive method

� a recursive method solves a problem by repeatedly
reducing the problem so that a base case can be
reached

printItToo("*", 5)

printItToo ("", 4)

**printItToo ("*", 3)

***printItToo ("*", 2)

****printItToo ("*", 1)

*****printItToo ("*", 0) base case

4

Notice that the number of times
the string is printed decreases
after each recursive call to printIt

Notice that the base case is
eventually reached.

Infinite Recursion

� if the base case(s) is missing, or never reached, a
recursive method will run forever (or until the
computer runs out of resources)

public static void printItForever(String s, int n) {

// missing base case; infinite recursion

System.out.print(s);

printItForever(s, n - 1);

}

printItForever("*", 1)

* printItForever("*", 0)

** printItForever("*", -1)

*** printItForever("*", -2)

5

Climbing a Flight of n Stairs

� not Java

climb(n) :

if n == 0

done

else

step up 1 stair

climb(n – 1);

end

6

Rabbits

7

Month 0: 1 pair 0 additional pairs

Month 1: first pair
makes another pair

1 additional pair

Month 2: each pair
makes another pair;
oldest pair dies

1 additional pair

Month 3: each pair
makes another pair;
oldest pair dies

2 additional pairs

Fibonacci Numbers

� the sequence of additional pairs
� 0, 1, 1, 2, 3, 5, 8, 13, ...

are called Fibonacci numbers

� base cases
� F(0) = 0

� F(1) = 1

� recursive definition
� F(n) = F(n – 1) + F(n – 2)

8

Recursive Methods & Return Values

� a recursive method can return a value

� example: compute the nth Fibonacci number

public static int fibonacci(int n) {

if (n == 0) {

return 0;

}

else if (n == 1) {

return 1;

}

else {

int f = fibonacci(n - 1) + fibonacci(n - 2);

return f;

}

}

9

Recursive Methods & Return Values

� example: write a recursive method countZeros that
counts the number of zeros in an integer number n

� 10305060700002L has 8 zeros

� trick: examine the following sequence of numbers
1. 10305060700002

2. 1030506070000

3. 103050607000

4. 10305060700

5. 103050607

6. 1030506 ...

10

Recursive Methods & Return Values

� not Java:

countZeros(n) :

if the last digit in n is a zero

return 1 + countZeros(n / 10)

else

return countZeros(n / 10)

11

� don't forget to establish the base case(s)

� when should the recursion stop? when you reach a single
digit (not zero digits; you never reach zero digits!)
� base case #1 : n == 0

� return 1

� base case #2 : n != 0 && n < 10

� return 0

12

public static int countZeros(long n) {

if(n == 0L) { // base case 1

return 1;

}

else if(n < 10L) { // base case 2

return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);

final long m = n / 10L;

if(lastDigitIsZero) {

return 1 + countZeros(m);

}

else {

return countZeros(m);

}

}

13

countZeros Call Stack

callZeros(800410L)

14

callZeros(800410L)

callZeros(80041L)

callZeros(8004L)

callZeros(800L)

callZeros(80L)

callZeros(8L)

1 + 0 + 0 + 1 + 1 + 0

0 + 0 + 1 + 1 + 0

0 + 1 + 1 + 0

1 + 1 + 0

1 + 0

0

= 3

last in first out

Fibonacci Call Tree

15

F(5)

F(4)

F(3)

F(2)

F(1)

1

F(0)

0

F(1)

1

F(2)

F(1)

1

F(0)

0

F(3)

F(2)

F(1)

1

F(0)

0

F(1)

1

Compute Powers of 10

� write a recursive method that computes 10n for any
integer value n

� recall:
� 100 = 1

� 10n = 10 * 10n-1

� 10-n = 1 / 10n

16

public static double powerOf10(int n) {

if (n == 0) {

// base case

return 1.0;

}

else if (n > 0) {

// recursive call for positive n

return 10.0 * powerOf10(n - 1);

}

else {

// recursive call for negative n

return 1.0 / powerOf10(-n);

}

}

17

Proving Correctness and Termination

� to show that a recursive method accomplishes its goal
you must prove:

1. that the base case(s) and the recursive calls are correct

2. that the method terminates

18

Proving Correctness

� to prove correctness:

1. prove that each base case is correct

2. assume that the recursive invocation is correct and then
prove that each recursive case is correct

19

printItToo

public static void printItToo(String s, int n) {

if (n == 0) {

return;

}

else {

System.out.print(s);

printItToo(s, n - 1);

}

}

20

Correctness of printItToo

1. (prove the base case) If n == 0 nothing is printed;
thus the base case is correct.

2. Assume that printItToo(s, n-1) prints the string
s exactly(n – 1) times. Then the recursive case
prints the string s exactly(n – 1)+1 = n times;
thus the recursive case is correct.

21

Proving Termination

� to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a
non-negative integer number

2. prove that each recursive invocation has a smaller size
than the original invocation

22

Termination of printIt

1. printIt(s, n) prints n copies of the string s;
define the size of printIt(s, n) to be n

2. The size of the recursive invocation
printIt(s, n-1) is n-1 (by definition) which is
smaller than the original size n.

23

countZeros
public static int countZeros(long n) {

if(n == 0L) { // base case 1

return 1;

}

else if(n < 10L) { // base case 2

return 0;

}

boolean lastDigitIsZero = (n % 10L == 0);

final long m = n / 10L;

if(lastDigitIsZero) {

return 1 + countZeros(m);

}

else {

return countZeros(m);

}

}

24

Correctness of countZeros

1. (base cases) If the number has only one digit then
the method returns 1 if the digit is zero and 0 if the
digit is not zero; therefore, the base case is correct.

2. (recursive cases) Assume that
countZeros(n/10L) is correct (it returns the
number of zeros in the first (d – 1) digits of n). If
the last digit in the number is zero, then the
recursive case returns 1 + the number of zeros in
the first (d – 1) digits of n, otherwise it returns
the number of zeros in the first (d – 1) digits of n;
therefore, the recursive cases are correct.

25

Termination of countZeros

1. Let the size of countZeros(n) be d the number of
digits in the number n.

2. The size of the recursive invocation
countZeros(n/10L) is d-1, which is smaller than
the size of the original invocation.

26

Decrease and Conquer

� a common strategy for solving computational
problems

� solves a problem by taking the original problem and
converting it to one smaller version of the same problem

� note the similarity to recursion

� decrease and conquer, and the closely related divide
and conquer method, are widely used in computer
science

� allow you to solve certain complex problems easily

� help to discover efficient algorithms

27

Root Finding

� suppose you have a mathematical function f(x) and
you want to find x0 such that f(x0) = 0

� why would you want to do this?

� many problems in computer science, science, and
engineering reduce to optimization problems

� find the shape of an automobile that minimizes aerodynamic drag

� find an image that is similar to another image (minimize the
difference between the images)

� find the sales price of an item that maximizes profit

� if you can write the optimization criteria as a function g(x)
then its derivative f(x) = dg/dx = 0 at the minimum
or maximum of g (as long as g has certain properties)

28

Bisection Method

� suppose you can evaluate f(x) at two points x = a
and x = b such that

� f(a) > 0

� f(b) < 0

29

x

f(x)

f(a)

f(b)

'plus'

'minus'

Bisection Method

� evaluate f(c) where c is halfway between a and b

� if f(c) is close enough to zero done

30

x

f(x)

f(a)

f(b)

f(c)

'plus'

'minus'

Bisection Method

� otherwise c becomes the new end point (in this case,
'minus') and recursively search the range
'plus' – 'minus'

31

x

f(x)

f(a)

f(b)

'plus'

'minus'

f(c)

public class Bisect {

// the function we want to find the root of

public static double f(double x) {

return Math.cos(x);

}

32

public static double bisect(double xplus, double xminus,

double tolerance) {

// base case

double c = (xplus + xminus) / 2.0;

double fc = f(c);

if(Math.abs(fc) < tolerance) {

return c;

}

else if (fc < 0.0) {

return bisect(xplus, c, tolerance);

}

else {

return bisect(c, xminus, tolerance);

}

}

33

public static void main(String[] args)

{

System.out.println("bisection returns: " +

bisect(1.0, Math.PI, 0.001));

System.out.println("true answer : "

+ Math.PI / 2.0);

}

}

prints:

bisection returns: 1.5709519476855602

true answer : 1.5707963267948966

34

Divide and Conquer

� bisection works by recursively finding which half of
the range 'plus' – 'minus' the root lies in

� each recursive call solves the same problem (tries to find
the root of the function by guessing at the midpoint of the
range)

� each recursive call solves one smaller problem because half
of the range is discarded

� bisection method is decrease and conquer

� divide and conquer algorithms typically recursively
divide a problem into several smaller sub-problems
until the sub-problems are small enough that they can
be solved directly

35

Recursion (Part 2)

Solving Recurrence Relations

36

Divide and Conquer

� bisection works by recursively finding which half of
the range 'plus' – 'minus' the root lies in

� each recursive call solves the same problem (tries to find
the root of the function by guessing at the midpoint of the
range)

� each recursive call solves one smaller problem because half
of the range is discarded

� bisection method is decrease and conquer

� divide and conquer algorithms typically recursively
divide a problem into several smaller sub-problems
until the sub-problems are small enough that they can
be solved directly

37

Merge Sort

� merge sort is a divide and conquer algorithm that sorts
a list of numbers by recursively splitting the list into
two halves

38

12 74 5 63 8

17 6824 53

254 3 1678

4 3 25 78 16

� the split lists are then merged into sorted sub-lists

39

4 3 25 78 16

523 4 6187

86 7152 43

84 61 3 72 5

Merging Sorted Sub-lists

� two sub-lists of length 1

40

4 3

left right

result

3 4

1 comparison
2 copies

41

LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}

Merging Sorted Sub-lists

� two sub-lists of length 2

42

43

left right

result

3 4

3 comparisons
4 copies

52

2 5

43

LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0) {

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

result.add(fL);

left.removeFirst();

}

else {

result.add(fR);

right.removeFirst();

}

}

if (left.isEmpty()) {

result.addAll(right);

}

else {

result.addAll(left);

}

Merging Sorted Sub-lists

� two sub-lists of length 4

44

left right

result

5 comparisons
8 copies

86 7152 43

84 61 3 72 5

Simplified Complexity Analysis

� in the worst case merging a total of n elements
requires
n – 1 comparisons +

n copies

= 2n – 1 total operations

� we say that the worst-case complexity of merging is
the order of O(n)

� O(...) is called Big O notation

� notice that we don't care about the constants 2 and 1

45

� formally, a function f(n) is an element of O(n) if and
only if there is a positive real number M and a real
number m such that

| f(n) | < Mn for all n > m

� is 2n – 1 an element of O(n)?

� yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0

46

Informal Analysis of Merge Sort

� suppose the running time (the number of operations)
of merge sort is a function of the number of elements
to sort

� let the function be T(n)

� merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists
� this takes 2T(n/2) running time

� then the sub-lists are merged

� this takes O(n) running time

� total running time T(n) = 2T(n/2) + O(n)

47

Solving the Recurrence Relation

T(n) → 2T(n/2) + O(n) T(n) approaches...

≈ 2T(n/2) + n

= 2[2T(n/4) + n/2] + n

= 4T(n/4) + 2n

= 4[2T(n/8) + n/4] + 2n

= 8T(n/8) + 3n

= 8[2T(n/16) + n/8] + 3n

= 16T(n/16) + 4n

= 2
kT(n/2k) + kn

48

Solving the Recurrence Relation

T(n) = 2
kT(n/2k) + kn

� for a list of length 1 we know T(1) = 1

� if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

n/2k = 1 ⇒ 2k = n ⇒ k = log(n)

49

Solving the Recurrence Relation

T(n) = 2log(n)T(n/2log(n)) + n log(n)

= n T(1) + n log(n)

= n + n log(n)

∈ n log(n)

50

Is Merge Sort Efficient?

� consider a simpler (non-recursive) sorting algorithm
called insertion sort

51

// to sort an array a[0]..a[n-1] not Java!

for i = 0 to (n-1) {

k = index of smallest element in sub-array a[i]..a[n-1]

swap a[i] and a[k]

}

for i = 0 to (n-1) { not Java!

for j = (i+1) to (n-1) {

if (a[j] < a[i]) {

k = j;

}

}

tmp = a[i]; a[i] = a[k]; a[k] = tmp;

}

1 comparison +
1 assignment

3 assignments

T(n)

52

∑ ∑
−

=

−

+=













+









=

1

0

1

)1(

32
n

i

n

ij

()() nin
n

i

312
1

0

+−−=∑
−

=

nin
n

i

n

i

n

i

31222
1

0

1

0

1

0

+−−= ∑∑∑
−

=

−

=

−

=

()
nn

nn
n 32

2

1
22

2
+−

−
−=

nnnnn 322
22

+−+−=

()22
2 nOnn ∈+=

Comparing Rates of Growth

53

O(n)

O(n logn)

O(n2)O(2n)

n

Comments

� big O complexity tells you something about the
running time of an algorithm as the size of the input,
n, approaches infinity

� we say that it describes the limiting, or asymptotic, running
time of an algorithm

� for small values of n it is often the case that a less
efficient algorithm (in terms of big O) will run faster
than a more efficient one

� insertion sort is typically faster than merge sort for short
lists of numbers

54

Revisiting the Fibonacci Numbers

� the recursive implementation based on the definition
of the Fibonacci numbers is inefficient

public static int fibonacci(int n) {

if (n == 0) {

return 0;

}

else if (n == 1) {

return 1;

}

int f = fibonacci(n - 1) + fibonacci(n - 2);

return f;

}

55

� how inefficient is it?

� let T(n) be the running time to compute the nth
Fibonacci number

� T(0) = T(1) = 1

� T(n) is a recurrence relation

56

T(n)

57

)2()1(−+−→ nTnT

())2()3()2(−+−+−= nTnTnT

)3()2(2 −+−= nTnT

)2(2 −> nT

())4(4)4(22 −=−> nTnT

())6(8)6(24 −=−> nTnT

())8(16)8(28 −=−> nTnT

)2(2 knT
k

−>

Solving the Recurrence Relation

T(n) > 2
kT(n - 2k)

� we know T(1) = 1

� if we can substitute T(1) into the right-hand side of T(n) we
might be able to solve the recurrence

n - 2k = 1 ⇒ 1 + 2k = n ⇒ k = (n – 1)/2

58

() ()
)2(2)1(2)2(2)(

2121 nnnk
OTknTnT ∈==−>

−−

An Efficient Fibonacci Algorithm

� an O(n) algorithm exists that computes all of the
Fibonacci numbers from f(0) to f(n)

59

F(5)

F(4)

F(3)

F(2)

F(1)

1

F(0)

0

F(1)

1

F(2)

F(1)

1

F(0)

0

F(3)

F(2)

F(1)

1

F(0)

0

F(1)

1

� create an array of length (n + 1) and sequentially fill in
the array values

� O(n)

// pre. n >= 0

public static int[] fibonacci(int n) {

int[] f = new int[n + 1];

f[0] = 0;

f[1] = 1;

for (int i = 2; i < n + 1; i++) {

f[i] = f[i - 1] + f[i - 2];

}

return f;

}

60

Closing Question

� the recursive Fibonacci and merge sort algorithms can
be illustrated using a call tree

� merge sort is actually 2 trees; one to split and one to merge

� why is the Fibonacci algorithm O(2n) and merge sort
O(n logn)?

61

