
Graphical User Interfaces

notes Chap 7

1

Java Swing

� Swing is a Java toolkit for building graphical user
interfaces (GUIs)

� http://docs.oracle.com/javase/tutorial/uiswing/TOC.html

� old version of the Java tutorial had a visual guide of
Swing components

� http://da2i.univ-lille1.fr/doc/tutorial-
java/ui/features/components.html

2

App to Roll a Die

3

� a simple application that lets the user roll a die

� when the user clicks the “Roll” button the die is rolled to a
new random value

� “event driven programming”

App to Roll a Die

4

� this application is simple enough to write as a single
class

� SimpleRoll.java

Model-View-Controller

� model

� represents state of the application and the rules that govern
access to and updates of state

� view

� presents the user with a sensory (visual, audio, haptic)
representation of the model state

� a user interface element (the user interface for simple
applications)

� controller

� processes and responds to events (such as user actions)
from the view and translates them to model method calls

5

Model—View—Controller

6

TV

- on : boolean

- channel : int

- volume : int

+ power(boolean) : void

+ channel(int) : void

+ volume(int) : void

RemoteControl

+ togglePower() : void

+ channelUp() : void

+ volumeUp() : void

Model
View

Controller

Model-View-Controller

7

Client uses the
application (GUI)

GUI invokes
Model methods

and View
methods

Controller
invokes Model
methods and

View methods

8 http://java.sun.com/developer/technicalArticles/javase/mvc/

a different MVC structure
than in the notes

App to Roll a Die: MVC

9

� we can also write the application using the model-
view-controller pattern

App to Roll a Die: Model

10

� model

� the data

� methods that get the data (accessors)

� methods that modify the data (mutators)

� the data

� a 6-sided die

� accessors

� get the current face value

� mutators

� roll the die

App to Roll a Die: Model

11

SimpleModel

+ getValue() : String

+ roll()

Die
1

App to Roll a Die: View

12

� view

� a visual (or other) display of the model

� a user interface that allows a user to interact with the view

� methods that get information from the view (accessors)

� methods that modify the view (mutators)

� a visual (or other) display of the model

� an image of the current face of the die

� a user interface that allows a user to interact with the
view

� roll button

App to Roll a Die: View

13

SimpleView

+ setRoll(String)

JLabel
1

JButton
1

allows the user to
roll the die; will
emit an action

event when
pressed

shows an image
of the die value

JFrame

Swing top-level
window

App to Roll a Die: Controller

14

� controller

� methods that map user interactions to model updates

SimpleController

+ actionPerformed(ActionEvent)

« interface »

ActionListener

interface for receiving
action events (e.g.,
when a button is

pressed)

App to Roll a Die: MVC

15

SimpleController

SimpleView

SimpleModel

1

1

SimpleApp

App to Roll a Die

16

� we can also write the application using the model-
view-controller pattern

� SimpleModel.java

� SimpleView.java

� SimpleController.java

� SimpleApp.java

Simple Calculator

� implement a simple calculator using the model-view-
controller (MVC) design pattern

� features:

� sum, subtract, multiply, divide

� clear

17

Application Appearance

18

Creating the Application

� the calculator application is launched by the user

� the notes refers to the application as the GUI

� the application:

1. creates the model for the calculator, and then

2. creates the view of the calculator

19

CalcMVC Application

public class CalcMVC

{

public static void main(String[] args)

{

CalcController controller = new CalcController();

CalcModel model = new CalcModel();

CalcView view = new CalcView(model, controller);

controller.setModel(model);

controller.setView(view);

view.setVisible(true);

}

}

20

Model

� features:

� sum, subtract, multiply, divide

� clear

21

22

CalcModel

- calcValue : int

+ getCalcValue() : int

+ getLastUserValue() : int

+ sum(int) : void

+ subtract(int) : void

+ multiply(int) : void

+ divide(int) : void

+ clear() : void

CalcModel: Attributes and Ctor
public class CalcModel

{

private int calcValue;

/**

* Creates a model with a calculated value of zero.

*/

public CalcModel() {

this.calcValue = 0;

}

23

CalcModel: clear

/**

* Clears the user values and the calculated value.

*/

public void clear() {

this.calcValue = 0;

}

24

CalcModel: getCalcValue

/**

* Get the current calculated value.

*

* @return The current calculated value.

*/

public int getCalcValue() {

return this.calcValue;

}

25

CalcModel: sum

/**

* Adds the calculated value by a user value.

*

* @param userValue

* The value to add to the current calculated

* value by.

*/

public void sum(int userValue) {

this.calcValue += userValue;

}

26

CalcModel: subtract and multiply

public void subtract(int userValue) {

this.calcValue -= userValue;

}

public void multiply(int userValue) {

this.calcValue *= userValue;

}

27

CalcModel: divide

/**

* Divides the calculated value by a user value.

*

* @param userValue

* The value to multiply the current calculated

* value by.

* @pre. userValue is not equivalent to zero.

*/

public void divide(int userValue) {

this.calcValue /= userValue;

}

28

Other model examples

� consider the Boggle app from CSE1030 last term
� http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/07/lab7.html

� consider Eclipse

� pick your favourite game and design a model for the
game

29

View

� view

� presents the user with a sensory (visual, audio, haptic)
representation of the model state

� a user interface element (the user interface for simple
applications)

30

Simple Applications

� simple applications often consist of just a single
window (containing some controls)

JFrame
window with border, title, buttons

31

View as a Subclass of JFrame

� a View can be
implemented as a subclass
of a JFrame

� hundreds of inherited
methods but only a dozen
or so are commonly called
by the implementer (see
URL below)

32

View

JFrame

Frame

Window

Container

Component

Object

user interface item

holds other components

plain window

window with title and
border

http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html

Implementing a View

� the View is responsible for creating:

� the Controller

� all of the user interface (UI) components

� buttons JButton

� labels JLabel

� text fields JTextField

� the View is also responsible for setting up the
communication of UI events to the Controller

� each UI component needs to know what object it should
send its events to

33

Labels and Text Fields

� a label displays unselectable text and images

� a text field is a single line of editable text

� the ability to edit the text can be turned on and off

34 http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html

label
JLabel

label
JLabel

text field (edit off)
JTextField

text field (edit on)
JTextField

http://docs.oracle.com/javase/tutorial/uiswing/components/label.html

Labels

� to create a label

JLabel label = new JLabel("text for the label");

� to create a text field (20 characters wide)

JTextField textField = new JTextField(20);

35

Adding the Labels and Text Fields

� see CalcView constructor

� try making the text field editable and non-editable

36

Buttons

� a button responds to the user pointing and clicking the
mouse on it (or the user pressing the Enter key when
the button has the focus)

37 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html

button
JButton

Buttons

� to create a button

JButton button = new JButton("text for the button");

38

Adding the Buttons

� see CalcView constructor

� try enabling and disabling the buttons

39

Event Driven Programming

� so far we have a View with some UI elements (buttons,
text fields)

� now we need to implement the actions

� each UI element is a source of events

� button pressed, slider moved, text changed (text field), etc.

� when the user interacts with a UI element an event is
triggered

� this causes an event object to be sent to every object
listening for that particular event

� the event object carries information about the event

� the event listeners respond to the event

40

Not a UML Diagram

41

event
source 1

event
source 2

event
listener A

event
listener B

event
listener C

event
listener D

event object 1

event object 2

Not a UML Diagram

42

Controller

event object "sum""sum"

"subtract"

"multiply"

"divide"

"clear"
event object "clear"

AbstractButton ActionEvent

implements

ActionListener

Implementation

� each Jbutton has two inherited methods from
AbstractButton

public void addActionListener(ActionListener l)

public void setActionCommand(String actionCommand)

� for each JButton

1. call addActionListener with the controller as the
argument

2. call setActionCommand with a string describing what event
has occurred

43

CalcView: Add Actions

� see CalcView setCommand method

44

Controller

� controller

� processes and responds to events (such as user actions)
from the view and translates them to model method calls

� needs to interact with both the view and the model
but does not own the view or model

� aggregation

45

View

JFrame

Controller Model
11

View is a
subclass

of JFrame

Controller has
1 View

Controller has
1 Model

Controller Fields

� see CalcController

46

CalcController

� recall that our application only uses events that are
fired by buttons (Jbuttons)

� a button fires an ActionEvent event whenever it is
clicked

� CalcController listens for fired ActionEvents

� how? by implementing the ActionListener interface

public interface ActionListener

{

void actionPerformed(ActionEvent e);

}

47

� CalcController was registered to listen for
ActionEvents fired by the various buttons in
CalcView (see method setCommand in CalcView)

� whenever a button fires an event, it passes an
ActionEvent object to CalcController via the
actionPerformed method

� actionPerformed is responsible for dealing with the
different actions (open, save, sum, etc)

48

Sum, Subtract, Multiply, Divide

49

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r

actionPerformed

getUserValue

C
a
l
c
M
o
d
e
l

sum

2

1

3

setCalcValue 5

getCalcValue4

CalcController: Other Actions

� see CalcController actionPerformed method

50

actionPerformed

� even with only 5 buttons our actionPerformed
method is unwieldy

� imagine what would happen if you tried to implement a
Controller this way for a big application

� rather than one big actionPerformed method we can
register a different ActionListener for each button

� each ActionListener will be an object that has its own
version of the actionPerformed method

51

Calculator Listeners

52

DivideListener

SubtractListener

SumListener

ArithmeticListener

Calculator Listener

� whenever a listener receives an event corresponding to
an arithmetic operation it does:

1. asks CalcView for the user value and converts it to an int
� getUserValue method

2. asks CalcModel to perform the arithmetic operation
� doOperation method

3. updates the calculated value in CalcView

53

ArithmeticListener

private abstract class ArithmeticListener implements

ActionListener {

@Override

public void actionPerformed(ActionEvent action) {

int userValue = this.getUserValue();

this.doOperation(userValue);

this.setCalculatedValue();

}

54

1.

2.

3.

ArithmeticListener

/**

* Subclasses will override this method to add, subtract,

* divide, multiply, etc., the userValue with the current

* calculated value.

*/

protected abstract void doOperation(int userValue);

55

ArithmeticListener

private int getUserValue() {

int userValue = 0;

try {

userValue = Integer.parseInt(getView().getUserValue());

}

catch(NumberFormatException ex)

{}

return userValue;

}

private void setCalculatedValue() {

getView().setCalcValue("" + getModel().getCalcValue());

}

56

Note: these methods need
access to the view and model
which are associated with the
controller.

Inner Classes

� how do we give the listeners access to the view and
model?

� could use aggregation

� alternatively, we can make the listeners be inner classes of
the controller

57

Inner Classes

� an inner class is a (non-static) class that is defined
inside of another class

public class Outer

{

// Outer's attributes and methods

private class Inner

{ // Inner's attributes and methods

}

}

58

Inner Classes

� an inner class has access to the attributes and methods
of its enclosing class, even the private ones

public class Outer

{

private int outerInt;

private class Inner

{

public setOuterInt(int num) { outerInt = num; }

}

}

59

note not this.outerInt

use Outer.this.outerInt

ArithmeticListener
public class CalcController2 {

// ...

// inner class of CalcController2

private abstract class ArithmeticListener implements

ActionListener {

// ...

}

// inner class of CalcController2

private class SumListener extends ArithmeticListener {

@Override

protected void doOperation(int userValue) {

// ...

}

}

}

60

SumListener

private class SumListener extends ArithmeticListener {

@Override

protected void doOperation(int userValue) {

getModel().sum(userValue);

}

}

61

Why Use Inner Classes

� only the controller needs to create instances of the
various listeners

� i.e., the listeners are not useful outside of the controller

� making the listeners private inner classes ensures that only
CalcController can instantiate the listeners

� the listeners need access to private methods inside of
CalcController (namely getView and
getModel)

� inner classes can access private methods

62

Calculator using multiple listeners

� requires changes to the view to support the adding of
listeners

� see CalcView2

63

