Graphical User Interfaces

notes Chap 7



Java Swing

» Swing is a Java toolkit for building graphical user
interfaces (GUISs)

» http://docs.oracle.com/javase/tutorial/uiswing/TOC.html

» old version of the Java tutorial had a visual guide of
Swing components

» http://dazi.univ-lillei.fr/doc/tutorial-
java/ui/features/components.html




App to Roll a Die

» a simple application that lets the user roll a die

» when the user clicks the “Roll” button the die is rolled to a
new random value

« . ° b
» “event driven programming

Simple View Example - 0

000
000




App to Roll a Die

» this application is simple enough to write as a single
class

» SimpleRoll.java




Model-View-Controller

» model

» represents state of the application and the rules that govern
access to and updates of state

> View

» presents the user with a sensory (visual, audio, haptic)
representation of the model state

» auser interface element (the user interface for simple
applications)
» controller

» processes and responds to events (such as user actions)
from the view and translates them to model method calls



Model—View—Controller

TV

— on : boolean
— channel : int

- volume : int

+ power (boolean) : void
+ channel (int) : void

+ volume (int) : void
Model

View

RemoteControl

+ togglePower () : wvoid
+ channelUp () : wvoid

+ volumeUp () : wvoid

Controller




Model-View-Controller

X

Client

Client uses the |
application (GUI) ~ . __________ I_/

|
ﬁ | Controller I

GUI invokes Controller
Model
Model methods E\ invokes Model

and View iow I methods and

methods View methods




a different MVC structure
than in the notes

Model
* Encapsulates application state
» Hesponds to state queries
= Exposes application
functionality
* Nofifies views of changes

‘i a

View View Selection Controller

+ Renders the models * Defines application behavior

* Requests updates from models * Maps user actions 1o

» Sends user gestures to controlle model updates
it it i sl B BB BB By P
« Allows controller to select view G- r AL : {L dod gt Ih
» One far each functionality

> 8 http://java.sun.com/developer/technicalArticles/javase/mvc/



App to Roll a Die: MVC

» we can also write the application using the model-
view-controller pattern



App to Roll a Die: Model

» model
» the data
» methods that get the data (accessors)
» methods that modify the data (mutators)

» the data
» a 6-sided die

» aCCessors
» get the current face value

» mutators
» roll the die

10



App to Roll a Die: Model

11

Die

¢

SimpleModel

+ getValue () : String
+ roll ()




App to Roll a Die: View

> view
» avisual (or other) display of the model
» a user interface that allows a user to interact with the view
» methods that get information from the view (accessors)
» methods that modify the view (mutators)

» avisual (or other) display of the model
» an image of the current face of the die

» a user interface that allows a user to interact with the
view
» roll button

12



App to Roll a Die: View

Swing top-level

window
JFrame
1 1
JLabel <> SimpleView <> JButton
+ setRoll (String)

. allows the user to
shows an image roll the die; will
of the die value emit an action

event when
pressed

13



App to Roll a Die: Controller

» controller
» methods that map user interactions to model updates

interface for receiving
action events (e.g.,
« interface » when a button is

Actionlistener pressed)

SimpleController

+ actionPerformed (ActionEvent)

14



App to Roll a Die:

15

MVC

SimpleApp

SimpleModel €
5
SimpleController €
<ﬁl
SimpleView <€




App to Roll a Die

» we can also write the application using the model-
view-controller pattern

» SimpleModel.java

» SimpleView.java

» SimpleController.java

» SimpleApp.java

16



Simple Calculator

» implement a simple calculator using the model-view-
controller (MVC) design pattern

» features:

» sum, subtract, multiply, divide
» clear

17



Application Appearance

|£) Simple Calculator

Calculated Value 0 Input| Add Subtract Multiply

18



Creating the Application

» the calculator application is launched by the user
» the notes refers to the application as the GUI
» the application:

1. creates the model for the calculator, and then
». creates the view of the calculator

19



CalcMVC Application

public class CalcMVC
{
public static void main (String[] args)
{
CalcController controller = new CalcController();
CalcModel model = new CalcModel();
CalcView view = new CalcView (model, controller);
controller.setModel (model) ;

controller.setView(view) ;

view.setVisible (true);

20



Model

» features:
» sum, subtract, multiply, divide

» clear
By Simple Calculator — B
Calculated Value 0 Inputl | Add Subtract Multiply Divide Clear

21



CalcModel

— calcValue

int

sum(int)

+ + + + + + +

clear ()

getCalcValue() : int
getLastUserValue ()

void

subtract (int) : wvoid
multiply(int) : void

divide(int) : wvoid

void

int

22




CalcModel: Attributes and Ctor

public class CalcModel
{

private int calcValue;

/**
* Creates a model with a calculated value of zero.
*/

public CalcModel () {

this.calcValue = 0;

23



CalcModel: clear

/**
* Clears the user values and the calculated wvalue.
*/

public void clear() {

this.calcValue = 0;

24



CalcModel: getCalcValue

/**
* Get the current calculated wvalue.

*

* @return The current calculated wvalue.
*/
public int getCalcValue () {

return this.calcValue;

25



CalcModel: sum

/**

*

*

*

*
*

*

Adds the calculated value by a user value.

@param userValue

The value to add to the current calculated
value by.

/

public void sum(int userValue) {

26

this.calcValue += userValue;



CalcModel: subtract and multiply

public void subtract (int userValue) {

this.calcValue —= userValue;

public void multiply (int userValue) {

this.calcValue *= userValue;

27



CalcModel: divide

[ **

* Divides the calculated value by a user value.

* @param userValue

* The value to multiply the current calculated
* value by.

* @pre. userValue is not equivalent to zero.
*/
public void divide (int userValue) {

this.calcValue /= userValue;

28



Other model examples

» consider the Boggle app from CSE1030 last term

» http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/o7/labz.html

» consider Eclipse

» pick your favourite game and design a model for the
game

29



View

> View

» presents the user with a sensory (visual, audio, haptic)
representation of the model state

» auser interface element (the user interface for simple
applications)

| £| Simple Calculator L= | B |

File |

o b )!Iue 15 input |5 | Add Subtract Multiply Divide Clear
Save File

30



Simple Applications

» simple applications often consist of just a single
window (containing some controls)

JFrame
window with border, title, buttons

F—

| £:| JFrame mm

31



View as a Subclass of JFrame

a View can be Object
implemented as a subclass I
of a JFrame Component | user interface item
hundreds of inherited Q
methods but only a dozen Container | holds other components
or so are commonly called Q
by the implementer (see Window plain window
URL below) Q
Frame window with title and
4 border
JFrame
View

> http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html



Implementing a View

» the View is responsible for creating:
» the Controller
» all of the user interface (UI) components

» buttons JButton
» labels JLabel
» text fields JTextField

» the View is also responsible for setting up the
communication of Ul events to the Controller

» each Ul component needs to know what object it should
send its events to

33



Labels and Text Fields

» a label displays unselectable text and images

» atext field is a single line of editable text
» the ability to edit the text can be turned on and off

34

File

Calculated Value 0 nput | W | ‘
—1\ /N
label text field (edit off) label text field (edit on)
JLabel JTextField JLabel JTextField

http://docs.oracle.com/javase/tutorial/uiswing/components/label.html

http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html



Labels

» to create a label

JLabel label = new JLabel ("text for the label");

» to create a text field (20 characters wide)

JTextField textField = new JTextField (20);

35



Adding the Labels and Text Fields

» see CalcView constructor
» try making the text field editable and non-editable



Buttons

» a button responds to the user pointing and clicking the
mouse on it (or the user pressing the Enter key when
the button has the focus)

F'ri:q éimpie Caleculator =
File
Calculated Value 0 Input | Add Subtract Multiply Divide Clear
button
JButton

37 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html



Buttons

» to create a button

JButton button = new JButton('"text for the button");



Adding the Buttons

» see CalcView constructor
» try enabling and disabling the buttons

39



Event Driven Programming

» so far we have a View with some Ul elements (buttons,
text fields)

» now we need to implement the actions
» each Ul element is a source of events
» button pressed, slider moved, text changed (text field), etc.

» when the user interacts with a Ul element an event is
triggered

» this causes an event object to be sent to every object
listening for that particular event

» the event object carries information about the event

» the event listeners respond to the event

40



Not a UML Diagram

event

listener A

event object 1

event
listener B

{ event |

source 1 J

event

listener C

event object 2

[ event |

source 2 J

41

event
listener D

AVAER VAR VERRVA




Not a UML Diagram

‘sum” event object "sum”
"subtract”
"multiply” Controller >
"divide"
event object "clear”
"clear”
implements
AbstractButton ActionEvent ActionListener

42



Implementation

» each Jbutton has two inherited methods from
AbstractButton

public void addActionListener (ActionlListener 1)

public void setActionCommand (String actionCommand)

» for each JButton

1. call addactionListener with the controller as the
argument

2. call setActionCommand with a string describing what event
has occurred

13



CalcView: Add Actions

» see CalcView setCommand method

44



Controller

» controller

» processes and responds to events (such as user actions)
from the view and translates them to model method calls

» needs to interact with both the view and the model

but does not own the view or model

» aggregation

View is a
subclass
of JFrame

45

JFrame

Z}

1
View —<>| Controller

1

<>— Model

Controller has
1 View

Controller has
1 Model



Controller Fields

» see CalcController



CalcController

» recall that our application only uses events that are
fired by buttons (Jbuttons)

» a button fires an ActionEvent event whenever it is
clicked

» CalcController listens for fired ActionEvents

» how? by implementing the ActionListener interface

public interface Actionlistener

{

void actionPerformed (ActionEvent e);

47



» CalcController was registered to listen for
ActionEvents fired by the various buttons in
CalcView (see method setCommand in CalcView)

» whenever a button fires an event, it passes an
ActionEvent object to CalcController viathe
actionPerformed method

» actionPerformed is responsible for dealing with the
different actions (open, save, sum, etc)



Sum, Subtract, Multiply, Divide

49

CalcView

actionPerformed
>
getUserValue
€
setCalcValue
=

CalcController

sum

getCalcValue

>

CalcModel




CalcController: Other Actions

» see CalcController actionPerformed method

50



actionPerformed

» even with only 5 buttons our actionPerformed
method is unwieldy

» imagine what would happen if you tried to implement a
Controller this way for a big application

» rather than one big actionPerformed method we can
register a different ActionListener for each button

» each ActionListener will be an object that has its own
version of the actionPerformed method

51



Calculator Listeners

ArithmeticListener

A

SumListener

52

SubtractListener

Dividelistener




Calculator Listener

» whenever a listener receives an event corresponding to
an arithmetic operation it does:

1. asks CalcView for the user value and converts it to an int
» getUserValue method

>. asks CalcModel to perform the arithmetic operation
» doOperation method

3. updates the calculated value in CalcView

53



ArithmeticListener

private abstract class ArithmeticListener implements
Actionlistener {

@Override

public void actionPerformed (ActionEvent action) {

int userValue = this.getUserValue();

this.doOperation (userValue) ;

this.setCalculatedvValue();

54



ArithmeticListener

/**
* Subclasses will override this method to add, subtract,

* divide, multiply, etc., the userValue with the current

* calculated wvalue.
*/

protected abstract void doOperation (int userValue);

55



ArithmeticListener

private int getUserValue() ({

int userValue = 0;

try {

userValue = Integer.parselnt (getView () .getUserValue());

}

catch (NumberFormatException ex)

{}

return userValue;

private void setCalculatedValue() {

Note: these methods need
access to the view and model
which are associated with the
controller.

getView () .setCalcValue ("" + getModel () .getCalcValue());




Inner Classes

» how do we give the listeners access to the view and
model?
» could use aggregation

» alternatively, we can make the listeners be inner classes of
the controller

57



Inner Classes

» an inner class is a (non-static) class that is defined
inside of another class

public class Outer

{
// Outer's attributes and methods

private class Inner

{ // Inner's attributes and methods

}



Inner Classes

» an inner class has access to the attributes and methods
of its enclosing class, even the private ones

public class Outer

{

private int outerlint;

private class Inner

{

public setOuterlInt (int num) { outerInt = num; }

} note not this.outerInt

use Outer.this.outerInt

59



ArithmeticListener

public class CalcController2 {
//

// inner class of CalcController2
private abstract class Arithmeticlistener implements

ActionListener {

//

// inner class of CalcController2

private class SumListener extends ArithmeticListener {

@Override

protected void doOperation (int userValue) ({

//

60



SumListener

private class SumlListener extends ArithmeticListener {
@Override
protected void doOperation (int userValue) ({

getModel () . sum(userValue) ;

61



Why Use Inner Classes

» only the controller needs to create instances of the
various listeners

» i.e., the listeners are not useful outside of the controller

» making the listeners private inner classes ensures that only
CalcController can instantiate the listeners

» the listeners need access to private methods inside of
CalcController (namely getView and
getModel)

» inner classes can access private methods

62



Calculator using multiple listeners

» requires changes to the view to support the adding of
listeners

» see CalcView2



