
Graphical User Interfaces

notes Chap 7
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Java Swing

� Swing is a Java toolkit for building graphical user 
interfaces (GUIs)

� http://docs.oracle.com/javase/tutorial/uiswing/TOC.html

� old version of the Java tutorial had a visual guide of 
Swing components

� http://da2i.univ-lille1.fr/doc/tutorial-
java/ui/features/components.html
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App to Roll a Die
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� a simple application that lets the user roll a die

� when the user clicks the “Roll” button the die is rolled to a 
new random value

� “event driven programming”



App to Roll a Die
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� this application is simple enough to write as a single 
class

� SimpleRoll.java



Model-View-Controller

� model

� represents state of the application and the rules that govern 
access to and updates of state

� view

� presents the user with a sensory (visual, audio, haptic) 
representation of the model state

� a user interface element (the user interface for simple 
applications)

� controller

� processes and responds to events (such as user actions) 
from the view and translates them to model method calls
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Model—View—Controller 
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TV

- on : boolean

- channel : int

- volume : int

+ power(boolean) : void

+ channel(int) : void

+ volume(int) : void

RemoteControl

+ togglePower() : void

+ channelUp() : void

+ volumeUp() : void

Model
View

Controller



Model-View-Controller
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Client uses the 
application (GUI)

GUI invokes 
Model methods 

and View 
methods

Controller 
invokes Model 
methods and 

View methods



8 http://java.sun.com/developer/technicalArticles/javase/mvc/

a different MVC structure 
than in the notes



App to Roll a Die: MVC
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� we can also write the application using the model-
view-controller pattern



App to Roll a Die: Model
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� model

� the data

� methods that get the data (accessors)

� methods that modify the data (mutators)

� the data

� a 6-sided die

� accessors

� get the current face value

� mutators

� roll the die



App to Roll a Die: Model
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SimpleModel

+ getValue() : String

+ roll()

Die
1



App to Roll a Die: View
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� view

� a visual (or other) display of the model

� a user interface that allows a user to interact with the view

� methods that get information from the view (accessors)

� methods that modify the view (mutators)

� a visual (or other) display of the model

� an image of the current face of the die

� a user interface that allows a user to interact with the 
view

� roll button



App to Roll a Die: View
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SimpleView

+ setRoll(String) 

JLabel
1

JButton
1

allows the user to
roll the die; will 
emit an action 

event when 
pressed

shows an image
of the die value

JFrame

Swing top-level
window



App to Roll a Die: Controller
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� controller

� methods that map user interactions to model updates 

SimpleController

+ actionPerformed(ActionEvent) 

« interface »

ActionListener

interface for receiving 
action events (e.g., 
when a button is 

pressed)



App to Roll a Die: MVC
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SimpleController

SimpleView

SimpleModel

1

1

SimpleApp



App to Roll a Die
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� we can also write the application using the model-
view-controller pattern

� SimpleModel.java

� SimpleView.java

� SimpleController.java

� SimpleApp.java



Simple Calculator

� implement a simple calculator using the model-view-
controller (MVC) design pattern

� features:

� sum, subtract, multiply, divide

� clear
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Application Appearance
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Creating the Application

� the calculator application is launched by the user

� the notes refers to the application as the GUI

� the application:

1. creates the model for the calculator, and then

2. creates the view of the calculator
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CalcMVC Application

public class CalcMVC

{

public static void main(String[] args) 

{

CalcController controller = new CalcController();

CalcModel model = new CalcModel();

CalcView view  = new CalcView(model, controller);

controller.setModel(model);

controller.setView(view);

view.setVisible(true);

}

}
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Model

� features:

� sum, subtract, multiply, divide

� clear
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CalcModel

- calcValue : int

+ getCalcValue() : int

+ getLastUserValue() : int

+ sum(int) : void

+ subtract(int) : void

+ multiply(int) : void

+ divide(int) : void

+ clear() : void



CalcModel: Attributes and Ctor
public class CalcModel

{

private int calcValue;

/**

* Creates a model with a calculated value of zero. 

*/

public CalcModel() {

this.calcValue = 0;

}
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CalcModel: clear

/**

* Clears the user values and the calculated value.

*/

public void clear() {

this.calcValue = 0;

}
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CalcModel: getCalcValue

/**

* Get the current calculated value.

* 

* @return The current calculated value.

*/

public int getCalcValue() {

return this.calcValue;

}
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CalcModel: sum

/**

* Adds the calculated value by a user value.

* 

* @param userValue

*          The value to add to the current calculated

*          value by.

*/

public void sum(int userValue) {

this.calcValue += userValue;

}
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CalcModel: subtract and multiply

public void subtract(int userValue) {

this.calcValue -= userValue;

}

public void multiply(int userValue) {

this.calcValue *= userValue;

}
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CalcModel: divide

/**

* Divides the calculated value by a user value.

* 

* @param userValue

*          The value to multiply the current calculated

*          value by.

* @pre. userValue is not equivalent to zero.

*/

public void divide(int userValue) {

this.calcValue /= userValue;

}
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Other model examples

� consider the Boggle app from CSE1030 last term
� http://www.eecs.yorku.ca/course_archive/2013-14/F/1030/labs/07/lab7.html

� consider Eclipse

� pick your favourite game and design a model for the 
game
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View

� view

� presents the user with a sensory (visual, audio, haptic) 
representation of the model state

� a user interface element (the user interface for simple 
applications)
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Simple Applications

� simple applications often consist of just a single 
window (containing some controls)

JFrame
window with border, title, buttons
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View as a Subclass of JFrame

� a View can be 
implemented as a subclass 
of a JFrame

� hundreds of inherited 
methods but only a dozen 
or so are commonly called 
by the implementer (see 
URL below)
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View

JFrame

Frame

Window

Container

Component

Object

user interface item

holds other components

plain window

window with title and
border

http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html



Implementing a View

� the View is responsible for creating:

� the Controller

� all of the user interface (UI) components

� buttons JButton

� labels JLabel

� text fields JTextField

� the View is also responsible for setting up the 
communication of UI events to the Controller

� each UI component needs to know what object it should 
send its events to
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Labels and Text Fields

� a label displays unselectable text and images

� a text field is a single line of editable text

� the ability to edit the text can be turned on and off

34 http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html

label
JLabel

label
JLabel

text field (edit off)
JTextField

text field (edit on)
JTextField

http://docs.oracle.com/javase/tutorial/uiswing/components/label.html



Labels

� to create a label

JLabel label = new JLabel("text for the label");

� to create a text field (20 characters wide)

JTextField textField = new JTextField(20);
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Adding the Labels and Text Fields

� see CalcView constructor

� try making the text field editable and non-editable
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Buttons

� a button responds to the user pointing and clicking the 
mouse on it (or the user pressing the Enter key when 
the button has the focus)

37 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html

button
JButton



Buttons

� to create a button

JButton button = new JButton("text for the button");
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Adding the Buttons

� see CalcView constructor

� try enabling and disabling the buttons
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Event Driven Programming

� so far we have a View with some UI elements (buttons, 
text fields)

� now we need to implement the actions

� each UI element is a source of events

� button pressed, slider moved, text changed (text field), etc.

� when the user interacts with a UI element an event is 
triggered

� this causes an event object to be sent to every object 
listening for that particular event

� the event object carries information about the event

� the event listeners respond to the event
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Not a UML Diagram
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event
source 1

event
source 2

event
listener A

event
listener B

event
listener C

event
listener D

event object 1

event object 2



Not a UML Diagram
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Controller

event object "sum""sum"

"subtract"

"multiply"

"divide"

"clear"
event object "clear"

AbstractButton ActionEvent

implements

ActionListener



Implementation

� each Jbutton has two inherited methods from 
AbstractButton

public void addActionListener(ActionListener l)

public void setActionCommand(String actionCommand)

� for each JButton

1. call addActionListener with the controller as the 
argument

2. call setActionCommand with a string describing what event 
has occurred
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CalcView: Add Actions

� see CalcView setCommand method
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Controller

� controller

� processes and responds to events (such as user actions) 
from the view and translates them to model method calls

� needs to interact with both the view and the model 
but does not own the view or model

� aggregation
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View

JFrame

Controller Model
11

View is a
subclass

of JFrame

Controller has
1 View

Controller has
1 Model



Controller Fields

� see CalcController
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CalcController

� recall that our application only uses events that are 
fired by buttons (Jbuttons)

� a button fires an ActionEvent event whenever it is 
clicked

� CalcController listens for fired ActionEvents

� how? by implementing the ActionListener interface

public interface ActionListener

{

void actionPerformed(ActionEvent e);

}
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� CalcController was registered to listen for 
ActionEvents fired by the various buttons in 
CalcView (see method setCommand in CalcView)

� whenever a button fires an event, it passes an 
ActionEvent object to CalcController via the 
actionPerformed method

� actionPerformed is responsible for dealing with the 
different actions (open, save, sum, etc)
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Sum, Subtract, Multiply, Divide
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CalcController: Other Actions

� see CalcController actionPerformed method
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actionPerformed

� even with only 5 buttons our actionPerformed
method is unwieldy

� imagine what would happen if you tried to implement a 
Controller this way for a big application

� rather than one big actionPerformed method we can 
register a different ActionListener for each button

� each ActionListener will be an object that has its own 
version of the actionPerformed method
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Calculator Listeners
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DivideListener

SubtractListener

SumListener

ArithmeticListener



Calculator Listener

� whenever a listener receives an event corresponding to 
an arithmetic operation it does:

1. asks CalcView for the user value and converts it to an int
� getUserValue method

2. asks CalcModel to perform the arithmetic operation
� doOperation method

3. updates the calculated value in CalcView
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ArithmeticListener

private abstract class ArithmeticListener implements 

ActionListener {

@Override

public void actionPerformed(ActionEvent action) {

int userValue = this.getUserValue();

this.doOperation(userValue);

this.setCalculatedValue();

}
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1.

2.

3.



ArithmeticListener

/**

* Subclasses will override this method to add, subtract,

* divide, multiply, etc., the userValue with the current

* calculated value.

*/

protected abstract void doOperation(int userValue);  
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ArithmeticListener

private int getUserValue() {

int userValue = 0;

try {

userValue = Integer.parseInt(getView().getUserValue());

}

catch(NumberFormatException ex)

{}

return userValue;

}

private void setCalculatedValue() {

getView().setCalcValue("" + getModel().getCalcValue());

}
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Note: these methods need
access to the view and model
which are associated with the
controller.



Inner Classes

� how do we give the listeners access to the view and 
model?

� could use aggregation

� alternatively, we can make the listeners be inner classes of 
the controller
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Inner Classes

� an inner class is a (non-static) class that is defined 
inside of another class

public class Outer

{

// Outer's attributes and methods

private class Inner

{ // Inner's attributes and methods

}

}  
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Inner Classes

� an inner class has access to the attributes and methods 
of its enclosing class, even the private ones

public class Outer

{

private int outerInt;

private class Inner

{

public setOuterInt(int num) { outerInt = num; }

}

}  
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note not this.outerInt

use Outer.this.outerInt



ArithmeticListener
public class CalcController2 {

// ...

// inner class of CalcController2

private abstract class ArithmeticListener implements

ActionListener {

// ...

}

// inner class of CalcController2

private class SumListener extends ArithmeticListener {

@Override

protected void doOperation(int userValue) {

// ...

}

}

}
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SumListener

private class SumListener extends ArithmeticListener {

@Override

protected void doOperation(int userValue) {

getModel().sum(userValue);

}

}
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Why Use Inner Classes

� only the controller needs to create instances of the 
various listeners

� i.e., the listeners are not useful outside of the controller

� making the listeners private inner classes ensures that only 
CalcController can instantiate the listeners

� the listeners need access to private methods inside of 
CalcController (namely getView and 
getModel)

� inner classes can access private methods 
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Calculator using multiple listeners

� requires changes to the view to support the adding of 
listeners

� see CalcView2
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