
Aggregation and Composition

[notes Chapter 4]

1

Privacy Leaks

� a privacy leak occurs when a class exposes a reference to a
non-public field (that is not a primitive or immutable)

� given a class X that is a composition of a Y

these are all examples of privacy leaks

2

public class X {

private Y y;

// …

}

public X(Y y) {

this.y = y;

}

public X(X other) {

this.y = other.y;

}

public Y getY() {

return this.y;

}

public void setY(Y y) {

this.y = y;

}

Consequences of Privacy Leaks

� a privacy leak allows some other object to control the
state of the object that leaked the field

� the object state can become inconsistent
� example: if a CreditCard exposes a reference to its expiry Date

then a client could set the expiry date to before the issue date

3

Consequences of Privacy Leaks

� a privacy leak allows some other object to control the
state of the object that leaked the field

� it becomes impossible to guarantee class invariants
� example: if a Period exposes a reference to one of its Date

objects then the end of the period could be set to before the start
of the period

4

Consequences of Privacy Leaks

� a privacy leak allows some other object to control the
state of the object that leaked the field

� composition becomes broken because the object no longer
owns its attribute

� when an object “dies” its parts may not die with it

5

Recipe for Immutability

� the recipe for immutability in Java is described by
Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

6 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

Immutability and Composition

� why is Item 5 of the Recipe for Immutability needed?

7

Collections as Attributes

Still Aggregation and Composition

8

Motivation

� often you will want to implement a class that has-a
collection as an attribute

� a university has-a collection of faculties and each faculty
has-a collection of schools and departments

� a molecule has-a collection of atoms

� a person has-a collection of acquaintances

� from the notes, a student has-a collection of GPAs and has-
a collection of courses

� a polygonal model has-a collection of triangles*

9

*polygons, actually, but triangles are easier to work with

What Does a Collection Hold?

� a collection holds references to instances

� it does not hold the instances

10

ArrayList<Date> dates =

new ArrayList<Date>();

Date d1 = new Date();

Date d2 = new Date();

Date d3 = new Date();

dates.add(d1);

dates.add(d2);

dates.add(d3);

100 client invocation

dates 200

d1 500

d2 600

d3 700

...

200 ArrayList object

500

600

700

Test Your Knowledge

1. What does the following print?

ArrayList<Point> pts = new ArrayList<Point>();

Point p = new Point(0., 0., 0.);

pts.add(p);

p.setX(10.0);

System.out.println(p);

System.out.println(pts.get(0));

2. Is an ArrayList<X> an aggregation of X or a
composition of X?

11

Student Class (from notes)

� a Student has-a string id

� a Student has-a collection of yearly GPAs

� a Student has-a collection of courses

12

Student Set<Course>List<Double>

1 1

Double CourseString

14 *

gpas courses

id

PolygonalModel Class

� a polygonal model has-a List of Triangles

� aggregation

� implements Iterable<Triangle>

� allows clients to access each Triangle sequentially

� class invariant

� List never null

13

PolygonalModel List<Triangle>

1

Triangle

*

tri

Iterable Interface

� implementing this interface allows an object to be the
target of the "foreach" statement

� must provide the following method

14

Iterator<T> iterator()

Returns an iterator over a set of elements of type T.

PolygonalModel
class PolygonalModel implements Iterable<Triangle>

{

private List<Triangle> tri;

public PolygonalModel()

{

this.tri = new ArrayList<Triangle>();

}

public Iterator<Triangle> iterator()

{

return this.tri.iterator();

}

15

PolygonalModel
public void clear()

{

// removes all Triangles

this.tri.clear();

}

public int size()

{

// returns the number of Triangles

return this.tri.size();

}

16

Collections as Attributes

� when using a collection as an attribute of a class X you
need to decide on ownership issues
� does X own or share its collection?

� if X owns the collection, does X own the objects held in the
collection?

17

X Shares its Collection with other Xs

� if X shares its collection with other X instances, then
the copy constructor does not need to create a new
collection

� the copy constructor can simply assign its collection

� [notes 4.3.3] refer to this as aliasing

18

PolygonalModel Copy Constructor 1

public PolygonalModel(PolygonalModel p)

{

// implements aliasing (sharing) with other

// PolygonalModel instances

this.setTriangles(p.getTriangles());

}

private List<Triangle> getTriangles()

{ return this.tri; }

private void setTriangles(List<Triangle> tri)

{ this.tri = tri; }

19

alias: no new List
created

Test Your Knowledge

1. Suppose you have a PolygonalModel p1 that has
100 Triangles. What does the following code print?

PolygonalModel p2 = new PolygonalModel(p1);

p2.clear();

System.out.println(p2.size());

System.out.println(p1.size());

20

X Owns its Collection: Shallow Copy

� if X owns its collection but not the objects in the
collection then the copy constructor can perform a
shallow copy of the collection

� a shallow copy of a collection means
� X creates a new collection

� the references in the collection are aliases for references in
the other collection

21

X Owns its Collection: Shallow Copy

� the hard way to perform a shallow copy

22

// assume there is an ArrayList<Date> dates

ArrayList<Date> sCopy = new ArrayList<Date>();

for(Date d : dates)

{

sCopy.add(d);

}

shallow copy: new List
created but elements
are all aliases

add does not create
new objects

X Owns its Collection: Shallow Copy

� the easy way to perform a shallow copy

23

// assume there is an ArrayList<Date> dates

ArrayList<Date> sCopy = new ArrayList<Date>(dates);

X Owns its Collection: Deep Copy

� if X owns its collection and the objects in the
collection then the copy constructor must perform a
deep copy of the collection

� a deep copy of a collection means
� X creates a new collection

� the references in the collection are references to new
objects (that are copies of the objects in other collection)

24

X Owns its Collection: Deep Copy

� how to perform a deep copy

25

// assume there is an ArrayList<Date> dates

ArrayList<Date> dCopy = new ArrayList<Date>();

for(Date d : dates)

{

dCopy.add(new Date(d.getTime());

}

deep copy: new List
created and new
elements created

constructor invocation
creates a new object

Inheritance

Notes Chapter 6

26

Inheritance

� you know a lot about an object by knowing its class

� for example what is a Komondor?

27

http://en.wikipedia.org/wiki/File:Komondor_delvin.jpg

28

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog

PureBreed is-a Object

Komondor is-a PureBreed

Komondor is-a Dog

Komondor is-a Object

29

...KomondorBloodHound

PureBreed Mix

Dog

Object

subclass of Object

superclass of PureBreed

subclass of Dog

superclass of Komondor

superclass of Dog

(and all other classes)
superclass ==

base class

parent class

subclass ==

derived class

extended class

child class

30

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends

PureBreed

Some Definitions

� we say that a subclass is derived from its superclass

� with the exception of Object, every class in Java has
one and only one superclass

� Java only supports single inheritance

� a class X can be derived from a class that is derived
from a class, and so on, all the way back to Object

� X is said to be descended from all of the classes in the
inheritance chain going back to Object

� all of the classes X is derived from are called ancestors of X

31

Why Inheritance?

� a subclass inherits all of the non-private members
(attributes and methods but not constructors) from
its superclass

� if there is an existing class that provides some of the
functionality you need you can derive a new class from the
existing class

� the new class has direct access to the public and
protected attributes and methods without having to re-
declare or re-implement them

� the new class can introduce new fields and methods

� the new class can re-define (override) its superclass
methods

32

Is-A

� inheritance models the is-a relationship between
classes

� from a Java point of view, is-a means you can use a
derived class instance in place of an ancestor class
instance

33

public someMethod(Dog dog)

{ // does something with dog }

// client code of someMethod

Komondor shaggy = new Komondor();

someMethod(shaggy);

Mix mutt = new Mix ();

someMethod(mutt);

Is-A Pitfalls

� is-a has nothing to do with the real world

� is-a has everything to do with how the implementer
has modelled the inheritance hierarchy

� the classic example:
� Circle is-a Ellipse?

34

Circle

Ellipse

Circle is-a Ellipse?

� if Ellipse can do something that Circle cannot,
then Circle is-a Ellipse is false

� remember: is-a means you can substitute a derived class
instance for one of its ancestor instances
� if Circle cannot do something that Ellipse can do then you

cannot (safely) substitute a Circle instance for an Ellipse
instance

35

// method in Ellipse

/*

* Change the width and height of the ellipse.

* @param width The desired width.

* @param height The desired height.

* @pre. width > 0 && height > 0

*/

public void setSize(double width, double height)

{

this.width = width;

this.height = height;

}

36

� there is no good way for Circle to support setSize
(assuming that the attributes width and height are
always the same for a Circle) because clients expect
setSize to set both the width and height

� can't Circle override setSize so that it throws an
exception if width != height?

� no; this will surprise clients because Ellipse setSize
does not throw an exception if width != height

� can't Circle override setSize so that it sets
width == height?

� no; this will surprise clients because Ellipse setSize
says that the width and height can be different

37

� But I have a Ph.D. in Mathematics, and I'm sure a
Circle is a kind of an Ellipse! Does this mean Marshall
Cline is stupid? Or that C++ is stupid? Or that OO is
stupid? [C++ FAQs http://www.parashift.com/c++-faq-lite/proper-inheritance.html#faq-21.8]

� Actually, it doesn't mean any of these things. But I'll tell you
what it does mean — you may not like what I'm about to
say: it means your intuitive notion of "kind of" is leading
you to make bad inheritance decisions. Your tummy is lying
to you about what good inheritance really means — stop
believing those lies.

38

� what if there is no setSize method?

� if a Circle can do everything an Ellipse can do then
Circle can extend Ellipse

39

Implementing Inheritance

� suppose you want to implement an inheritance
hierarchy that represents breeds of dogs for the
purpose of helping people decide what kind of dog
would be appropriate for them

� many possible fields:

� appearance, size, energy, grooming requirements, amount
of exercise needed, protectiveness, compatibility with
children, etc.

� we will assume two fields measured on a 10 point scale

� size from 1 (small) to 10 (giant)

� energy from 1 (lazy) to 10 (high energy)

40

Dog
public class Dog extends Object

{

private int size;

private int energy;

// creates an "average" dog

Dog()

{ this(5, 5); }

Dog(int size, int energy)

{ this.setSize(size); this.setEnergy(energy); }

41

public int getSize()

{ return this.size; }

public int getEnergy()

{ return this.energy; }

public final void setSize(int size)

{ this.size = size; }

public final void setEnergy(int energy)

{ this.energy = energy; }

}

42

why final? stay tuned…

What is a Subclass?

� a subclass looks like a new class that has the same API
as its superclass with perhaps some additional
methods and fields

� inheritance does more than copy the API of the
superclass

� the derived class contains a subobject of the parent class

� the superclass subobject needs to be constructed (just like a
regular object)

� the mechanism to perform the construction of the superclass
subobject is to call the superclass constructor

43

Constructors of Subclasses

1. the first line in the body of every constructor must

be a call to another constructor

� if it is not then Java will insert a call to the superclass
default constructor

� if the superclass default constructor does not exist or is private
then a compilation error occurs

2. a call to another constructor can only occur on the
first line in the body of a constructor

3. the superclass constructor must be called during
construction of the derived class

44

Mix UML Diagram

45

Dog

Mix

1

ArrayList<String>

breeds

Mix (version 1)
public final class Mix extends Dog

{ // no declaration of size or energy; inherited from Dog

private ArrayList<String> breeds;

public Mix ()

{ // call to a Dog constructor

super();

this.breeds = new ArrayList<String>();

}

public Mix(int size, int energy)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>();

}

46

public Mix(int size, int energy,

ArrayList<String> breeds)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

47

Mix (version 2)
public final class Mix extends Dog

{ // no declaration of size or energy; inherited from Dog

private ArrayList<String> breeds;

public Mix ()

{ // call to a Mix constructor

this(5, 5);

}

public Mix(int size, int energy)

{ // call to a Mix constructor

this(size, energy, new ArrayList<String>());

}

48

public Mix(int size, int energy,

ArrayList<String> breeds)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

49

� why is the constructor call to the superclass needed?
� because Mix is-a Dog and the Dog part of Mix needs to be

constructed

50

51

Dog

- size : int

- energy : int

+ setSize()

+ setEnergy()

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

Mix

- breeds : ArrayList<String>

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

52

Mix object

Dog object

Object object

size 1

energy 10

breeds 1000

Mix mutt = new Mix(1, 10);

1. Mix constructor starts running

• creates new Dog subobject by invoking

the Dog constructor

2. Dog constructor starts running

• creates new Object subobject

by (silently) invoking the
Object constructor

3. Object constructor runs

• sets size and energy

• creates a new empty ArrayList and

assigns it to breeds

Invoking the Superclass Ctor

� why is the constructor call to the superclass needed?
� because Mix is-a Dog and the Dog part of Mix needs to be

constructed
� similarly, the Object part of Dog needs to be constructed

53

Invoking the Superclass Ctor

� a derived class can only call its own constructors or the
constructors of its immediate superclass
� Mix can call Mix constructors or Dog constructors

� Mix cannot call the Object constructor

� Object is not the immediate superclass of Mix

� Mix cannot call PureBreed constructors

� cannot call constructors across the inheritance hierarchy

� PureBreed cannot call Komondor constructors

� cannot call subclass constructors

54

Constructors & Overridable Methods

� if a class is intended to be extended then its
constructor must not call an overridable method

� Java does not enforce this guideline

� why?

� recall that a derived class object has inside of it an object of
the superclass

� the superclass object is always constructed first, then the
subclass constructor completes construction of the subclass
object

� the superclass constructor will call the overridden version
of the method (the subclass version) even though the
subclass object has not yet been constructed

55

Superclass Ctor & Overridable Method
public class SuperDuper

{

public SuperDuper()

{

// call to an over-ridable method; bad

this.overrideMe();

}

public void overrideMe()

{

System.out.println("SuperDuper overrideMe");

}

}

56

Subclass Overrides Method
public class SubbyDubby extends SuperDuper {

private final Date date;

public SubbyDubby()

{ super(); this.date = new Date(); }

@Override public void overrideMe()

{ System.out.print("SubbyDubby overrideMe : ");

System.out.println(this.date); }

public static void main(String[] args)

{ SubbyDubby sub = new SubbyDubby();

sub.overrideMe(); }

}

57

� the programmer's intent was probably to have the
program print:

SuperDuper overrideMe

SubbyDubby overrideMe : <the date>

or, if the call to the overridden method was intentional
SubbyDubby overrideMe : <the date>

SubbyDubby overrideMe : <the date>

� but the program prints:

SubbyDubby overrideMe : null

SubbyDubby overrideMe : <the date>

58

final attribute in
two different states!

What's Going On?

1. new SubbyDubby() calls the SubbyDubby
constructor

2. the SubbyDubby constructor calls the SuperDuper

constructor

3. the SuperDuper constructor calls the method
overrideMe which is overridden by SubbyDubby

4. the SubbyDubby version of overrideMe prints the
SubbyDubby date attribute which has not yet been
assigned to by the SubbyDubby constructor (so date is
null)

5. the SubbyDubby constructor assigns date

6. SubbyDubby overrideMe is called by the client

59

� remember to make sure that your base class
constructors only call final methods or private
methods

� if a base class constructor calls an overridden method, the
method will run in an unconstructed derived class

60

Other Methods

� methods in a subclass will often need or want to call
methods in the immediate superclass
� a new method in the subclass can call any public or
protected method in the superclass without using any
special syntax

� a subclass can override a public or protected
method in the superclass by declaring a method that
has the same signature as the one in the superclass

� a subclass method that overrides a superclass method can
call the overridden superclass method using the super
keyword

61

Dog equals

� we will assume that two Dogs are equal if their size
and energy are the same

@Override public boolean equals(Object obj)

{

boolean eq = false;

if(obj != null && this.getClass() == obj.getClass())

{

Dog other = (Dog) obj;

eq = this.getSize() == other.getSize() &&

this.getEnergy() == other.getEnergy();

}

return eq;

}

62

Mix equals (version 1)

� two Mix instances are equal if their Dog subobjects are
equal and they have the same breeds

@Override public boolean equals(Object obj)

{ // the hard way

boolean eq = false;

if(obj != null && this.getClass() == obj.getClass()) {

Mix other = (Mix) obj;

eq = this.getSize() == other.getSize() &&

this.getEnergy() == other.getEnergy() &&

this.breeds.size() == other.breeds.size() &&

this.breeds.containsAll(other.breeds);

}

return eq;

}
63

subclass can call
public method of
the superclass

Mix equals (version 2)

� two Mix instances are equal if their Dog subobjects are
equal and they have the same breeds

� Dog equals already tests if two Dog instances are equal

� Mix equals can call Dog equals to test if the Dog subobjects
are equal, and then test if the breeds are equal

� also notice that Dog equals already checks that the
Object argument is not null and that the classes are
the same

� Mix equals does not have to do these checks again

64

@Override public boolean equals(Object obj)

{

boolean eq = false;

if(super.equals(obj))

{ // the Dog subobjects are equal

Mix other = (Mix) obj;

eq = this.breeds.size() == other.breeds.size() &&

this.breeds.containsAll(other.breeds);

}

return eq;

}

65

subclass method that overrides a superclass
method can call the overridden superclass method

Dog toString

@Override public String toString()

{

String s = "size " + this.getSize() +

"energy " + this.getEnergy();

return s;

}

66

Mix toString

@Override public String toString()

{

StringBuffer b = new StringBuffer();

b.append(super.toString());

for(String s : this.breeds)

b.append(" " + s);

b.append(" mix");

return b.toString();

}

67

Dog hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

final int prime = 31;

int result = 1;

result = prime * result + this.getEnergy();

result = prime * result + this.getSize();

return result;

}

68

Mix hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

final int prime = 31;

int result = super.hashCode();

result = prime * result + this.breeds.hashCode();

return result;

}

69

Mix Memory Diagram

70

500 Mix object

size 5

energy 5

breeds 1750

•inherited from superclass
•private in superclass
•not accessible by name to Mix

Inheritance (Part 2)

71

Preconditions and Inheritance

� precondition

� what the method assumes to be true about the arguments
passed to it

� inheritance (is-a)

� a subclass is supposed to be able to do everything its
superclasses can do

� how do they interact?

72

Strength of a Precondition

� to strengthen a precondition means to make the
precondition more restrictive

// Dog setEnergy

// 1. no precondition

// 2. 1 <= energy

// 3. 1 <= energy <= 10

public void setEnergy(int energy)

{ ... }

73

weakest precondition

strongest precondition

Preconditions on Overridden Methods

� a subclass can change a precondition on a method but
it must not strengthen the precondition

� a subclass that strengthens a precondition is saying that it
cannot do everything its superclass can do

74

// Dog setEnergy

// assume non-final

// @pre. none

public

void setEnergy(int nrg)

{ // ... }

// Mix setEnergy

// bad : strengthen precond.

// @pre. 1 <= nrg <= 10

public

void setEnergy(int nrg)

{

if (nrg < 1 || nrg > 10)

{ // throws exception }

// ...

}

� client code written for Dogs now fails when given a
Mix

� remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

75

// client code that sets a Dog's energy to zero

public void walk(Dog d)

{

d.setEnergy(0);

}

Postconditions and Inheritance

� postcondition

� what the method promises to be true when it returns

� the method might promise something about its return value

� "returns size where size is between 1 and 10 inclusive"

� the method might promise something about the state of the
object used to call the method

� "sets the size of the dog to the specified size"

� the method might promise something about one of its parameters

� how do postconditions and inheritance interact?

76

Strength of a Postcondition

� to strengthen a postcondition means to make the
postcondition more restrictive

// Dog getSize

// 1. no postcondition

// 2. 1 <= this.size

// 3. 1 <= this.size <= 10

public int getSize()

{ ... }

77

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods

� a subclass can change a postcondition on a method but
it must not weaken the postcondition

� a subclass that weakens a postcondition is saying that it
cannot do everything its superclass can do

78

// Dog getSize

//

// @post. 1 <= size <= 10

public

int getSize()

{ // ... }

// Dogzilla getSize

// bad : weaken postcond.

// @post. 1 <= size

public

int getSize()

{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

� client code written for Dogs can now fail when given a
Dogzilla

� remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

79

// client code that assumes Dog size <= 10

public String sizeToString(Dog d)

{

int sz = d.getSize();

String result = "";

if (sz < 4) result = "small";

else if (sz < 7) result = "medium";

else if (sz <= 10) result = "large";

return result;

}

Exceptions

� all exceptions are objects that are subclasses of
java.lang.Throwable

80

Throwable

Exception

RuntimeException and many, many more

IllegalArgumentException and many more

AJ chapter 9

User Defined Exceptions

� you can define your own exception hierarchy

� often, you will subclass Exception

81

Exception

DogException

BadSizeException NoFoodException BadDogException

public

class DogException extends Exception

Exceptions and Inheritance

� a method that claims to throw a checked exception of
type X is allowed to throw any checked exception type
that is a subclass of X

� this makes sense because exceptions are objects and
subclass objects are substitutable for ancestor classes

// in Dog

public void someDogMethod() throws DogException

{

// can throw a DogException, BadSizeException,

// NoFoodException, or BadDogException

}

82

� a method that overrides a superclass method that
claims to throw a checked exception of type X can also
claim to throw a checked exception of type X or a
subclass of X

� remember: a subclass is substitutable for the parent type

// in Mix

@Override

public void someDogMethod() throws DogException

{

// ...

}

83

Which are Legal?

� in Mix
@Override

public void someDogMethod() throws BadDogException

@Override

public void someDogMethod() throws Exception

@Override

public void someDogMethod()

@Override

public void someDogMethod()

throws DogException, IllegalArgumentException

84

Review

1. Inheritance models the ______ relationship between
classes.

2. Dog is a ______ of Object.

3. Dog is a ______ of Mix.

4. Can a Dog instance do everything a Mix instance
can?

5. Can a Mix instance do everything a Dog instance
can?

6. Is a Dog instance substitutable for a Mix instance?

7. Is a Mix instance substitutable for a Dog instance?

85

8. Can a subclass use the private fields of its superclass?

9. Can a subclass use the private methods of its
superclass?

10. Suppose you have a class X that you do not want
anyone to extend. How do you enforce this?

11. Suppose you have an immutable class X. Someone
extends X to make it mutable. Is this legal?

12. What do you need to do to enforce immutability?

86

13. Suppose you have a class Y that extends X.

a. Does each Y instance have a X instance inside of it?

b. How do you construct the X subobject inside of the Y
instance?

c. What syntax is used to call the superclass constructor?

d. What is constructed first–the X subobject or the Y object?

e. Suppose Y introduces a brand new method that needs to
call a public method in X named xMethod. How does the
new Y method call xMethod?

f. Suppose Y overrides a public method in X named
xMethod. How does the overriding Y method call
xMethod?

87

14. Suppose you have a class Y that extends X. X has a
method with the following precondition:
@pre. value must be a multiple of 2

If Y overrides the method which of the following are
acceptable preconditions for the overriding method:

a. @pre. value must be a multiple of 2

b. @pre. value must be odd

c. @pre. value must be a multiple of 2 and must be less

than 100

d. @pre. value must be a multiple of 10

e. @pre. none

88

14. Suppose you have a class Y that extends X. X has a
method with the following postcondition:

@return – A String of length 10

If Y overrides the method which of the following are
acceptable postconditions for the overriding method:

a. @return – A String of length 9 or 10

b. @return – The String "weimaraner"

c. @return – An int

d. @return – The same String returned by toString

e. @return – A random String of length 10

89

15. Suppose Dog toString has the following Javadoc:
/*

* Returns a string representation of a dog.

* The string is the size of the dog followed by a

* a space followed by the energy.

* @return The string representation of the dog.

*/

Does this affect subclasses of Dog?

90

Inheritance Recap

� inheritance allows you to create subclasses that are
substitutable for their ancestors

� inheritance interacts with preconditions, postconditions,
and exception throwing

� subclasses

� inherit all non-private features

� can add new features

� can change the behaviour of non-final methods by
overriding the parent method

� contain an instance of the superclass

� subclasses must construct the instance via a superclass
constructor

91

Puzzle 3

92

� Write the class Enigma, which extends Object, so that
the following program prints false:

public class Conundrum

{

public static void main(String[] args)

{

Enigma e = new Enigma();

System.out.println(e.equals(e));

}

}

� You must not override Object.equals()

[Java Puzzlers by Joshua Block and Neal Gaffer]

Polymorphism

� inheritance allows you to define a base class that has
fields and methods

� classes derived from the base class can use the public and
protected base class fields and methods

� polymorphism allows the implementer to change the
behaviour of the derived class methods

93

// client code

public void print(Dog d) {

System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

CockerSpaniel lady = new CockerSpaniel();

Mix mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

94

Dog toString

CockerSpaniel toString

Mix toString

� notice that fido, lady, and mutt were declared as
Dog, CockerSpaniel, and Mutt

� what if we change the declared type of fido, lady,
and mutt ?

95

// client code

public void print(Dog d) {

System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

Dog lady = new CockerSpaniel();

Dog mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

96

Dog toString

CockerSpaniel toString

Mix toString

� what if we change the print method parameter type
to Object ?

97

// client code

public void print(Object obj) {

System.out.println(obj.toString());

}

// later on...

Dog fido = new Dog();

Dog lady = new CockerSpaniel();

Dog mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

this.print(new Date());

98

Dog toString

CockerSpaniel toString

Mix toString

Date toString

Late Binding

� polymorphism requires late binding of the method
name to the method definition

� late binding means that the method definition is
determined at run-time

99

obj.toString()
non-static method

run-time type of
the instance obj

Declared vs Run-time type

100

Dog lady = new CockerSpaniel();

declared
type

run-time or actual
type

� the declared type of an instance determines what
methods can be used

� the name lady can only be used to call methods in Dog

� lady.someCockerSpanielMethod()won't compile

101

Dog lady = new CockerSpaniel();

� the actual type of the instance determines what
definition is used when the method is called

� lady.toString() uses the CockerSpaniel definition
of toString

102

Dog lady = new CockerSpaniel();

Inheritance (Part 3)

Abstract Classes

103

Abstract Classes

� sometimes you will find that you want the API for a
base class to have a method that the base class cannot
define
� e.g. you might want to know what a Dog's bark sounds like

but the sound of the bark depends on the breed of the dog
� you want to add the method bark to Dog but only the subclasses

of Dog can implement bark

104

Abstract Classes

� sometimes you will find that you want the API for a
base class to have a method that the base class cannot
define
� e.g. you might want to know the breed of a Dog but only the

subclasses have information about the breed
� you want to add the method getBreed to Dog but only the

subclasses of Dog can implement getBreed

105

� if the base class has methods that only subclasses can
define and the base class has fields common to all
subclasses then the base class should be abstract

� if you have a base class that just has methods that it cannot
implement then you probably want an interface

� abstract :
� (dictionary definition) existing only in the mind

� in Java an abstract class is a class that you cannot make
instances of

� e.g. http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

106

� an abstract class provides a partial definition of a class

� the subclasses complete the definition

� an abstract class can define fields and methods

� subclasses inherit these

� an abstract class can define constructors

� subclasses must call these

� an abstract class can declare abstract methods

� subclasses must define these (unless the subclass is also
abstract)

107

Abstract Methods

� an abstract base class can declare, but not define, zero
or more abstract methods

� the base class is saying "all Dogs can provide a String
describing the breed, but only the subclasses know
enough to implement the method"

108

public abstract class Dog

{

// fields, ctors, regular methods

public abstract String getBreed();

}

Abstract Methods

� the non-abstract subclasses must provide definitions
for all abstract methods
� consider getBreed in Mix

109

public class Mix extends Dog

{ // stuff from before...

@Override public String getBreed() {

if(this.breeds.isEmpty()) {

return "mix of unknown breeds";

}

StringBuffer b = new StringBuffer();

b.append("mix of");

for(String breed : this.breeds) {

b.append(" " + breed);

}

return b.toString();

}

110

PureBreed

� a purebreed dog is a dog with a single breed
� one String field to store the breed

� note that the breed is determined by the subclasses
� the class PureBreed cannot give the breed field a value

� but it can implement the method getBreed

� the class PureBreed defines an field common to all
subclasses and it needs the subclass to inform it of the
actual breed
� PureBreed is also an abstract class

111

public abstract class PureBreed extends Dog

{

private String breed;

public PureBreed(String breed) {

super();

this.breed = breed;

}

public PureBreed(String breed, int size, int energy) {

super(size, energy);

this.breed = breed;

}

112

@Override public String getBreed()

{

return this.breed;

}

}

113

Subclasses of PureBreed

� the subclasses of PureBreed are responsible for
setting the breed
� consider Komondor

114

Komondor
public class Komondor extends PureBreed

{

private final String BREED = "komondor";

public Komondor() {

super(BREED);

}

public Komondor(int size, int energy) {

super(BREED, size, energy);

}

// other Komondor methods...

}

115

Inheritance (Part 4)

Static Features; Interfaces

116

Static Fields and Inheritance

� static fields behave the same as non-static fields in
inheritance

� public and protected static fields are inherited by
subclasses, and subclasses can access them directly by name

� private static fields are not inherited and cannot be
accessed directly by name

� but they can be accessed/modified using public and protected
methods

117

Static Fields and Inheritance

� the important thing to remember about static fields
and inheritance

� there is only one copy of the static field shared among the
declaring class and all subclasses

� consider trying to count the number of Dog objects
created by using a static counter

118

// the wrong way to count the number of Dogs created

public abstract class Dog {

// other fields...

static protected int numCreated = 0;

Dog() {

// ...

Dog.numCreated++;

}

public static int getNumberCreated() {

return Dog.numCreated;

}

// other contructors, methods...

}

119

protected, not private, so that
subclasses can modify it directly

// the wrong way to count the number of Dogs created

public class Mix extends Dog

{

// fields...

Mix()

{

super();

Mix.numCreated++;

}

// other contructors, methods...

}

120

// too many dogs!

public class TooManyDogs

{

public static void main(String[] args)

{

Mix mutt = new Mix();

System.out.println(Mix.getNumberCreated());

}

}

prints 2

121

What Went Wrong?

� there is only one copy of the static field shared among
the declaring class and all subclasses
� Dog declared the static field

� Dog increments the counter everytime its constructor is
called

� Mix inherits and shares the single copy of the field

� Mix constructor correctly calls the superclass constructor

� which causes numCreated to be incremented by Dog

� Mix constructor then incorrectly increments the counter

122

Counting Dogs and Mixes

� suppose you want to count the number of Dog
instances and the number of Mix instances

� Mix must also declare a static field to hold the count

� somewhat confusingly, Mix can give the counter the same name
as the counter declared by Dog

123

public class Mix extends Dog

{

// other fields...

private static int numCreated = 0; // bad style

public Mix()

{

super(); // will increment Dog.numCreated

// other Mix stuff...

numCreated++; // will increment Mix.numCreated

}

// ...

124

Hiding Fields

� note that the Mix field numCreated has the same
name as an field declared in a superclass
� whenever numCreated is used in Mix, it is the Mix

version of the field that is used

� if a subclass declares an field with the same name as a
superclass field, we say that the subclass field hides the
superclass field

� considered bad style because it can make code hard to read
and understand
� should change numCreated to numMixCreated in Mix

125

Static Methods and Inheritance

� there is a big difference between calling a static
method and calling a non-static method when dealing
with inheritance

� there is no dynamic dispatch on static methods

� therefore, you cannot override a static method

126

127

public abstract class Dog {

private static int numCreated = 0;

public static int getNumCreated() {

return Dog.numCreated;

}

}

public class Mix {

private static int numMixCreated = 0;

public static int getNumCreated() {

return Mix.numMixCreated;

}

}

public class Komondor {

private static int numKomondorCreated = 0;

public static int getNumCreated() {

return Komondor.numKomondorCreated;

}

}

notice no @Override

notice no @Override

128

public class WrongCount {

public static void main(String[] args) {

Dog mutt = new Mix();

Dog shaggy = new Komondor();

System.out.println(mutt.getNumCreated());

System.out.println(shaggy.getNumCreated());

System.out.println(Mix.getNumCreated());

System.out.println(Komondor.getNumCreated());

}

}

prints 2

2

1

1

What's Going On?

� there is no dynamic dispatch on static methods

� because the declared type of mutt is Dog, it is the Dog
version of getNumCreated that is called

� because the declared type of shaggy is Dog, it is the
Dog version of getNumCreated that is called

129

Hiding Methods

� notice that Mix.getNumCreated and
Komondor.getNumCreated work as expected

� if a subclass declares a static method with the same
name as a superclass static method, we say that the
subclass static method hides the superclass static
method

� you cannot override a static method, you can only hide it

� hiding static methods is considered bad form because it
makes code hard to read and understand

130

� the client code in WrongCount illustrates two cases of
bad style, one by the client and one by the
implementer of the Dog hierarchy

1. the client should not have used an instance to call a static
method

2. the implementer should not have hidden the static
method in Dog

131

Interfaces

132

Interfaces

� recall that you typically use an abstract class when you
have a superclass that has fields and methods that are
common to all subclasses

� the abstract class provides a partial implementation that
the subclasses must complete

� subclasses can only inherit from a single superclass

� if you want classes to support a common API then you
probably want to define an interface

133

Interfaces

� in Java an interface is a reference type (similar to a
class)

� an interface says what methods an object must have
and what the methods are supposed to do

� i.e., an interface is an API

134

Interfaces

� an interface can contain only

� constants

� method signatures

� nested types (ignore for now)

� there are no method bodies

� interfaces cannot be instantiated—they can only be
implemented by classes or extended by other interfaces

135

Interfaces Already Seen

public interface Comparable<T>

{

int compareTo(T o);

}

136

access—either public or
package-private (blank)

interface
name

Interfaces Already Seen
public interface Iterable<T>

{

Iterator<T> iterator();

}

public interface Collection<E> extends Iterable<E>

{

boolean add(E e);

void clear();

boolean contains(Object o);

// many more method signatures...

}

137

access—either public or
package-private (blank)

interface
name

parent
interfaces

Interfaces Already Seen

public interface List<E> extends Collection<E>

{

boolean add(E e);

void add(int index, E element);

boolean addAll(Collection<? extends E> c);

// many more method signatures...

}

138

Creating an Interface

� decide on a name

� decide what methods you need in the interface

� this is harder than it sounds because...

� once an interface is released and widely implemented, it is
almost impossible to change

� if you change the interface, all classes implementing the interface
must also change

139

Function Interface

� in mathematics, a real-valued scalar function of one
real scalar variable maps a real value to another real
value

140

y = f (x)

Creating an Interface

� decide on a name
� DoubleToDoubleFunction

� decide what methods you need in the interface
� double at(double x)

� double[] at(double[] x)

141

Creating an Interface

public interface DoubleToDoubleFunction {

double at(double x);

double[] at(double[] x);

}

142

Classes that Implement an Interface

� a class that implements an interface says so by using
the implements keyword

� consider the function f (x) = x2

143

public class Square implements
DoubleToDoubleFunction {

public double at(double x) {

return x * x;

}

public double[] at(double[] x) {

double[] result = new double[x.length];

for (int i = 0; i < x.length; i++) {

result[i] = x[i] * x[i];

}

return result;

}

}

144

Implementing Multiple Interfaces

� unlike inheritance where a subclass can extend only
one superclass, a class can implement as many
interfaces as it needs to

public class ArrayList<E>

extends AbstractList<E>

implements List<E>,

RandomAccess,

Cloneable,

Serializable

145

superclass

interfaces

