
Aggregation and Composition

[notes Chapter 4]

1

Aggregation and Composition

� the terms aggregation and composition are used to
describe a relationship between objects

� both terms describe the has-a relationship
� the university has-a collection of departments

� each department has-a collection of professors

2

Aggregation and Composition

� composition implies ownership
� if the university disappears then all of its departments disappear

� a university is a composition of departments

� aggregation does not imply ownership
� if a department disappears then the professors do not disappear

� a department is an aggregation of professors

3

Triangle Aggregation

� if a client gets a reference to one of the triangle's
points, then the client can change the position of the
point without asking the triangle

4

5

pointB = new Point(0.0, 1.0, -3.0);

tri = new Triangle(new Point(-1.0, -1.0, -3.0),

pointB,

new Point(2.0, 0.0, -3.0));

// Draw triangle

gl.glBegin(GL2.GL_TRIANGLES);

gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color

gl.glVertex3d(tri.getA().getX(),

tri.getA().getY(),

tri.getA().getZ());

gl.glVertex3d(tri.getB().getX(),

tri.getB().getY(),

tri.getB().getZ());

gl.glVertex3d(tri.getC().getX(),

tri.getC().getY(),

tri.getC().getZ());

gl.glEnd();

// the client moves a point without help from the triangle

delta += 0.05f;

pointB.setY(1.0 + Math.sin(delta));

client and triangle
share a reference to
pointB

draw the triangle
by asking tri for
the coordinates
of each of its points

client uses pointB
to change the point
coordinates

Composition

6

Composition

� recall that an object of type X that is composed of an
object of type Y means

� X has-a Y object and

� X owns the Y object

� in other words

7

the X object, and only the X object, is responsible for its Y object

Composition

� this means that the X object will generally not share
references to its Y object with clients

� constructors will create new Y objects

� accessors will return references to new Y objects

� mutators will store references to new Y objects

� the “new Y objects” are called defensive copies

8

the X object, and only the X object, is responsible for its Y object

Composition & the Default Constructor

� if a default constructor is defined it must create a
suitable Y object

public X()

{

// create a suitable Y; for example

this.y = new Y(/* suitable arguments */);

}

9

the X object, and only the X object, is responsible for its Y object

defensive copy

Test Your Knowledge

1. Re-implement Triangle so that it is a composition of
3 points. Start by adding a default constructor to
Triangle that creates 3 new Point objects with
suitable values.

10

Composition & Copy Constructor

� if a copy constructor is defined it must create a new Y
that is a deep copy of the other X object’s Y object

public X(X other)

{

// create a new Y that is a copy of other.y

this.y = new Y(other.getY());

}

11

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition & Copy Constructor

� what happens if the X copy constructor does not make
a deep copy of the other X object’s Y object?

// don’t do this

public X(X other)

{

this.y = other.y;

}

� every X object created with the copy constructor ends up
sharing its Y object

� if one X modifies its Y object, all X objects will end up with a
modified Y object

� this is called a privacy leak

12

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X copy
constructor need to create a new Y? Why or why not?

2. Implement the Triangle copy constructor.

13

14

3. Suppose you have a Triangle copy constructor and
main method like so:

public Triangle(Triangle t)

{ this.pA = t.pA; this.pB = t.pB; this.pC = t.pC; }

public static void main(String[] args) {

Triangle t1 = new Triangle();

Triangle t2 = new Triangle(t1);

t1.getA().set(-100.0, -100.0, 5.0);

System.out.println(t2.getA());

}

What does the program print? How many Point
objects are there in memory? How many Point
objects should be in memory?

Composition & Other Constructors

� a constructor that has a Y parameter must first deep
copy and then validate the Y object

public X(Y y)

{

// create a copy of y

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

15

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Other Constructors

� why is the deep copy required?

� if the constructor does this

// don’t do this for composition

public X(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak

16

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X
constructor need to copy the other X object’s Y
object? Why or why not?

2. Implement the following Triangle constructor:
/**

* Create a Triangle from 3 points

* @param p1 The first point.

* @param p2 The second point.

* @param p3 The third point.

* @throws IllegalArgumentException if the 3 points are

* not unique

*/

17

Triangle has a class
invariant: the 3 points
of a Triangle are unique

Composition and Accessors

� never return a reference to an attribute; always return a
deep copy

public Y getY()

{

return new Y(this.y);

}

18

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Accessors

� why is the deep copy required?

� if the accessor does this

// don’t do this for composition

public Y getY() {

return this.y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak

19

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X accessor
need to copy it’s Y object before returning it? Why
or why not?

2. Implement the following 3 Triangle accessors:
/**

* Get the first/second/third point of the triangle.

* @return The first/second/third point of the triangle

*/

20

Test Your Knowledge

3. Given your Triangle accessors from question 2,
can you write an improved Triangle copy
constructor that does not make copies of the point
attributes?

21

Composition and Mutators

� if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep
copy of the client-provided Y object and validate it

public void setY(Y y)

{

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

22

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Mutators

� why is the deep copy required?

� if the mutator does this

// don’t do this for composition

public void setY(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak

23

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X mutator
need to copy the Y object? Why or why not? Does it
need to the validate the Y object?

2. Implement the following 3 Triangle mutators:
/**

* Set the first/second/third point of the triangle.

* @param p The desired first/second/third point of

* the triangle.

* @return true if the point could be set;

* false otherwise

*/

24

Triangle has a class
invariant: the 3 points
of a Triangle are unique

Price of Defensive Copying

� defensive copies are often required, but the price of
defensive copying is time and memory needed to
create and garbage collect lots of objects

25

Period Class

� adapted from Effective Java by Joshua Bloch

� available online at
http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

� we want to implement a class that represents a period
of time

� a period has a start time and an end time

� end time is always after the start time

26

Period Class

� we want to implement a class that represents a period
of time
� has-a Date representing the start of the time period

� has-a Date representing the end of the time period

� class invariant: start of time period is always prior to the
end of the time period

� class invariant

� some property of the state of the object that is established
by a constructor and maintained between calls to public
methods

27

Period Class

28

Period Date

2

Period is a composition

of two Date objects

29

public final class Period {

private Date start;

private Date end;

/**

* @param start beginning of the period.

* @param end end of the period; must not precede start.

* @throws IllegalArgumentException if start is after end.

* @throws NullPointerException if start or end is null

*/

public Period(Date start, Date end) {

if (start.compareTo(end) > 0) {

throw new IllegalArgumentException("start after end");

}

this.start = start;

this.end = end;

}

Test Your Knowledge

1. Is Date mutable or immutable?

2. Is Period implementing aggregation or composition?

3. Add 1 more line of client code to the following that
shows how the client can break the class invariant:

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p = new Period(start, end);

4. Fix the constructor.

30

31

/**

* @return the start Date of the period

*/

public Date getStart()

{

return this.start;

}

/**

* @return the end Date of the period

*/

public Date getEnd()

{

return this.end;

}

Test Your Knowledge

1. Add 1 more line of client code to the following that
shows how the client can break the class invariant
using either of the start or end methods

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p = new Period(start, end);

32

33

/**

* Creates a time period by copying another time period.

* @param other the time period to copy

*/

public Period(Period other)

{

this.start = other.start;

this.end = other.end;

}

Test Your Knowledge

1. What does the following program print?

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p1 = new Period(start, end);

Period p2 = new Period(p1);

System.out.println(p1.getStart() == p2.getStart());

System.out.println(p1.getEnd() == p2.getEnd());

2. Fix the copy constructor.

34

Date does not provide a copy constructor. To copy a Date object d:
Date d = new Date();

Date dCopy = new Date(d.getTime());

35

/**

* Sets the start time of the period.

* @param newStart the new starting time of the period

* @return true if the new starting time is earlier than

* the current end time; false otherwise

*/

public boolean setStart(Date newStart)

{

boolean ok = false;

if (newStart.compareTo(this.end) < 0)

{

this.start = newStart;

ok = true;

}

return ok;

}

Test Your Knowledge

1. Add 1 more line of client code to the following that
shows how the client can break the class invariant

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p = new Period(start, end);

p.setStart(start);

2. Fix the accessors and setStart.

36

Privacy Leaks

� a privacy leak occurs when a class exposes a reference to a
non-public field (that is not a primitive or immutable)

� given a class X that is a composition of a Y

these are all examples of privacy leaks

37

public class X {

private Y y;

// …

}

public X(Y y) {

this.y = y;

}

public X(X other) {

this.y = other.y;

}

public Y getY() {

return this.y;

}

public void setY(Y y) {

this.y = y;

}

Consequences of Privacy Leaks

� a privacy leak allows some other object to control the
state of the object that leaked the field

� the object state can become inconsistent
� example: if a CreditCard exposes a reference to its expiry Date

then a client could set the expiry date to before the issue date

38

Consequences of Privacy Leaks

� a privacy leak allows some other object to control the
state of the object that leaked the field

� it becomes impossible to guarantee class invariants
� example: if a Period exposes a reference to one of its Date

objects then the end of the period could be set to before the start
of the period

39

Consequences of Privacy Leaks

� a privacy leak allows some other object to control the
state of the object that leaked the field

� composition becomes broken because the object no longer
owns its attribute

� when an object “dies” its parts may not die with it

40

Recipe for Immutability

� the recipe for immutability in Java is described by
Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

41 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

Immutability and Composition

� why is Item 5 of the Recipe for Immutability needed?

42

Collections as Attributes

Still Aggregation and Composition

43

Motivation

� often you will want to implement a class that has-a
collection as an attribute

� a university has-a collection of faculties and each faculty
has-a collection of schools and departments

� a molecule has-a collection of atoms

� a person has-a collection of acquaintances

� from the notes, a student has-a collection of GPAs and has-
a collection of courses

� a polygonal model has-a collection of triangles*

44

*polygons, actually, but triangles are easier to work with

What Does a Collection Hold?

� a collection holds references to instances

� it does not hold the instances

45

ArrayList<Date> dates =

new ArrayList<Date>();

Date d1 = new Date();

Date d2 = new Date();

Date d3 = new Date();

dates.add(d1);

dates.add(d2);

dates.add(d3);

100 client invocation

dates 200

d1 500

d2 600

d3 700

...

200 ArrayList object

500

600

700

Test Your Knowledge

1. What does the following print?

ArrayList<Point> pts = new ArrayList<Point>();

Point p = new Point(0., 0., 0.);

pts.add(p);

p.setX(10.0);

System.out.println(p);

System.out.println(pts.get(0));

2. Is an ArrayList<X> an aggregation of X or a
composition of X?

46

Student Class (from notes)

� a Student has-a string id

� a Student has-a collection of yearly GPAs

� a Student has-a collection of courses

47

Student Set<Course>List<Double>

1 1

Double CourseString

14 *

gpas courses

id

PolygonalModel Class

� a polygonal model has-a List of Triangles

� aggregation

� implements Iterable<Triangle>

� allows clients to access each Triangle sequentially

� class invariant

� List never null

48

PolygonalModel List<Triangle>

1

Triangle

*

tri

Iterable Interface

� implementing this interface allows an object to be the
target of the "foreach" statement

� must provide the following method

49

Iterator<T> iterator()

Returns an iterator over a set of elements of type T.

PolygonalModel
class PolygonalModel implements Iterable<Triangle>

{

private List<Triangle> tri;

public PolygonalModel()

{

this.tri = new ArrayList<Triangle>();

}

public Iterator<Triangle> iterator()

{

return this.tri.iterator();

}

50

PolygonalModel
public void clear()

{

// removes all Triangles

this.tri.clear();

}

public int size()

{

// returns the number of Triangles

return this.tri.size();

}

51

Collections as Attributes

� when using a collection as an attribute of a class X you
need to decide on ownership issues
� does X own or share its collection?

� if X owns the collection, does X own the objects held in the
collection?

52

X Shares its Collection with other Xs

� if X shares its collection with other X instances, then
the copy constructor does not need to create a new
collection

� the copy constructor can simply assign its collection

� [notes 4.3.3] refer to this as aliasing

53

PolygonalModel Copy Constructor 1

public PolygonalModel(PolygonalModel p)

{

// implements aliasing (sharing) with other

// PolygonalModel instances

this.setTriangles(p.getTriangles());

}

private List<Triangle> getTriangles()

{ return this.tri; }

private void setTriangles(List<Triangle> tri)

{ this.tri = tri; }

54

alias: no new List
created

Test Your Knowledge

1. Suppose you have a PolygonalModel p1 that has
100 Triangles. What does the following code print?

PolygonalModel p2 = new PolygonalModel(p1);

p2.clear();

System.out.println(p2.size());

System.out.println(p1.size());

55

X Owns its Collection: Shallow Copy

� if X owns its collection but not the objects in the
collection then the copy constructor can perform a
shallow copy of the collection

� a shallow copy of a collection means
� X creates a new collection

� the references in the collection are aliases for references in
the other collection

56

X Owns its Collection: Shallow Copy

� the hard way to perform a shallow copy

57

// assume there is an ArrayList<Date> dates

ArrayList<Date> sCopy = new ArrayList<Date>();

for(Date d : dates)

{

sCopy.add(d);

}

shallow copy: new List
created but elements
are all aliases

add does not create
new objects

X Owns its Collection: Shallow Copy

� the easy way to perform a shallow copy

58

// assume there is an ArrayList<Date> dates

ArrayList<Date> sCopy = new ArrayList<Date>(dates);

X Owns its Collection: Deep Copy

� if X owns its collection and the objects in the
collection then the copy constructor must perform a
deep copy of the collection

� a deep copy of a collection means
� X creates a new collection

� the references in the collection are references to new
objects (that are copies of the objects in other collection)

59

X Owns its Collection: Deep Copy

� how to perform a deep copy

60

// assume there is an ArrayList<Date> dates

ArrayList<Date> dCopy = new ArrayList<Date>();

for(Date d : dates)

{

dCopy.add(new Date(d.getTime());

}

deep copy: new List
created and new
elements created

constructor invocation
creates a new object

Inheritance

Notes Chapter 6

61

Inheritance

� you know a lot about an object by knowing its class

� for example what is a Komondor?

62

http://en.wikipedia.org/wiki/File:Komondor_delvin.jpg

63

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog

PureBreed is-a Object

Komondor is-a PureBreed

Komondor is-a Dog

Komondor is-a Object

64

...KomondorBloodHound

PureBreed Mix

Dog

Object

subclass of Object

superclass of PureBreed

subclass of Dog

superclass of Komondor

superclass of Dog

(and all other classes)
superclass ==

base class

parent class

subclass ==

derived class

extended class

child class

65

...KomondorBloodHound

PureBreed Mix

Dog

Object

Dog extends Object

PureBreed extends Dog

Komondor extends

PureBreed

Some Definitions

� we say that a subclass is derived from its superclass

� with the exception of Object, every class in Java has
one and only one superclass

� Java only supports single inheritance

� a class X can be derived from a class that is derived
from a class, and so on, all the way back to Object

� X is said to be descended from all of the classes in the
inheritance chain going back to Object

� all of the classes X is derived from are called ancestors of X

66

Why Inheritance?

� a subclass inherits all of the non-private members
(attributes and methods but not constructors) from
its superclass

� if there is an existing class that provides some of the
functionality you need you can derive a new class from the
existing class

� the new class has direct access to the public and
protected attributes and methods without having to re-
declare or re-implement them

� the new class can introduce new fields and methods

� the new class can re-define (override) its superclass
methods

67

Is-A

� inheritance models the is-a relationship between
classes

� from a Java point of view, is-a means you can use a
derived class instance in place of an ancestor class
instance

68

public someMethod(Dog dog)

{ // does something with dog }

// client code of someMethod

Komondor shaggy = new Komondor();

someMethod(shaggy);

Mix mutt = new Mix ();

someMethod(mutt);

Is-A Pitfalls

� is-a has nothing to do with the real world

� is-a has everything to do with how the implementer
has modelled the inheritance hierarchy

� the classic example:
� Circle is-a Ellipse?

69

Circle

Ellipse

Circle is-a Ellipse?

� if Ellipse can do something that Circle cannot,
then Circle is-a Ellipse is false

� remember: is-a means you can substitute a derived class
instance for one of its ancestor instances
� if Circle cannot do something that Ellipse can do then you

cannot (safely) substitute a Circle instance for an Ellipse
instance

70

// method in Ellipse

/*

* Change the width and height of the ellipse.

* @param width The desired width.

* @param height The desired height.

* @pre. width > 0 && height > 0

*/

public void setSize(double width, double height)

{

this.width = width;

this.height = height;

}

71

� there is no good way for Circle to support setSize
(assuming that the attributes width and height are
always the same for a Circle) because clients expect
setSize to set both the width and height

� can't Circle override setSize so that it throws an
exception if width != height?

� no; this will surprise clients because Ellipse setSize
does not throw an exception if width != height

� can't Circle override setSize so that it sets
width == height?

� no; this will surprise clients because Ellipse setSize
says that the width and height can be different

72

� But I have a Ph.D. in Mathematics, and I'm sure a
Circle is a kind of an Ellipse! Does this mean Marshall
Cline is stupid? Or that C++ is stupid? Or that OO is
stupid? [C++ FAQs http://www.parashift.com/c++-faq-lite/proper-inheritance.html#faq-21.8]

� Actually, it doesn't mean any of these things. But I'll tell you
what it does mean — you may not like what I'm about to
say: it means your intuitive notion of "kind of" is leading
you to make bad inheritance decisions. Your tummy is lying
to you about what good inheritance really means — stop
believing those lies.

73

� what if there is no setSize method?

� if a Circle can do everything an Ellipse can do then
Circle can extend Ellipse

74

Implementing Inheritance

� suppose you want to implement an inheritance
hierarchy that represents breeds of dogs for the
purpose of helping people decide what kind of dog
would be appropriate for them

� many possible fields:

� appearance, size, energy, grooming requirements, amount
of exercise needed, protectiveness, compatibility with
children, etc.

� we will assume two fields measured on a 10 point scale

� size from 1 (small) to 10 (giant)

� energy from 1 (lazy) to 10 (high energy)

75

Dog
public class Dog extends Object

{

private int size;

private int energy;

// creates an "average" dog

Dog()

{ this(5, 5); }

Dog(int size, int energy)

{ this.setSize(size); this.setEnergy(energy); }

76

public int getSize()

{ return this.size; }

public int getEnergy()

{ return this.energy; }

public final void setSize(int size)

{ this.size = size; }

public final void setEnergy(int energy)

{ this.energy = energy; }

}

77

why final? stay tuned…

What is a Subclass?

� a subclass looks like a new class that has the same API
as its superclass with perhaps some additional
methods and fields

� inheritance does more than copy the API of the
superclass

� the derived class contains a subobject of the parent class

� the superclass subobject needs to be constructed (just like a
regular object)

� the mechanism to perform the construction of the superclass
subobject is to call the superclass constructor

78

Constructors of Subclasses

1. the first line in the body of every constructor must

be a call to another constructor

� if it is not then Java will insert a call to the superclass
default constructor

� if the superclass default constructor does not exist or is private
then a compilation error occurs

2. a call to another constructor can only occur on the
first line in the body of a constructor

3. the superclass constructor must be called during
construction of the derived class

79

Mix UML Diagram

80

Dog

Mix

1

ArrayList<String>

breeds

Mix (version 1)
public final class Mix extends Dog

{ // no declaration of size or energy; inherited from Dog

private ArrayList<String> breeds;

public Mix ()

{ // call to a Dog constructor

super();

this.breeds = new ArrayList<String>();

}

public Mix(int size, int energy)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>();

}

81

public Mix(int size, int energy,

ArrayList<String> breeds)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

82

Mix (version 2)
public final class Mix extends Dog

{ // no declaration of size or energy; inherited from Dog

private ArrayList<String> breeds;

public Mix ()

{ // call to a Mix constructor

this(5, 5);

}

public Mix(int size, int energy)

{ // call to a Mix constructor

this(size, energy, new ArrayList<String>());

}

83

public Mix(int size, int energy,

ArrayList<String> breeds)

{ // call to a Dog constructor

super(size, energy);

this.breeds = new ArrayList<String>(breeds);

}

84

� why is the constructor call to the superclass needed?
� because Mix is-a Dog and the Dog part of Mix needs to be

constructed

85

86

Dog

- size : int

- energy : int

+ setSize()

+ setEnergy()

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

Mix

- breeds : ArrayList<String>

+ equals(Object) : boolean

+ hashCode() : int

+ toString() : String

...

87

Mix object

Dog object

Object object

size 1

energy 10

breeds 1000

Mix mutt = new Mix(1, 10);

1. Mix constructor starts running

• creates new Dog subobject by invoking

the Dog constructor

2. Dog constructor starts running

• creates new Object subobject

by (silently) invoking the
Object constructor

3. Object constructor runs

• sets size and energy

• creates a new empty ArrayList and

assigns it to breeds

Invoking the Superclass Ctor

� why is the constructor call to the superclass needed?
� because Mix is-a Dog and the Dog part of Mix needs to be

constructed
� similarly, the Object part of Dog needs to be constructed

88

Invoking the Superclass Ctor

� a derived class can only call its own constructors or the
constructors of its immediate superclass
� Mix can call Mix constructors or Dog constructors

� Mix cannot call the Object constructor

� Object is not the immediate superclass of Mix

� Mix cannot call PureBreed constructors

� cannot call constructors across the inheritance hierarchy

� PureBreed cannot call Komondor constructors

� cannot call subclass constructors

89

Constructors & Overridable Methods

� if a class is intended to be extended then its
constructor must not call an overridable method

� Java does not enforce this guideline

� why?

� recall that a derived class object has inside of it an object of
the superclass

� the superclass object is always constructed first, then the
subclass constructor completes construction of the subclass
object

� the superclass constructor will call the overridden version
of the method (the subclass version) even though the
subclass object has not yet been constructed

90

Superclass Ctor & Overridable Method
public class SuperDuper

{

public SuperDuper()

{

// call to an over-ridable method; bad

this.overrideMe();

}

public void overrideMe()

{

System.out.println("SuperDuper overrideMe");

}

}

91

Subclass Overrides Method
public class SubbyDubby extends SuperDuper {

private final Date date;

public SubbyDubby()

{ super(); this.date = new Date(); }

@Override public void overrideMe()

{ System.out.print("SubbyDubby overrideMe : ");

System.out.println(this.date); }

public static void main(String[] args)

{ SubbyDubby sub = new SubbyDubby();

sub.overrideMe(); }

}

92

� the programmer's intent was probably to have the
program print:

SuperDuper overrideMe

SubbyDubby overrideMe : <the date>

or, if the call to the overridden method was intentional
SubbyDubby overrideMe : <the date>

SubbyDubby overrideMe : <the date>

� but the program prints:

SubbyDubby overrideMe : null

SubbyDubby overrideMe : <the date>

93

final attribute in
two different states!

What's Going On?

1. new SubbyDubby() calls the SubbyDubby
constructor

2. the SubbyDubby constructor calls the SuperDuper

constructor

3. the SuperDuper constructor calls the method
overrideMe which is overridden by SubbyDubby

4. the SubbyDubby version of overrideMe prints the
SubbyDubby date attribute which has not yet been
assigned to by the SubbyDubby constructor (so date is
null)

5. the SubbyDubby constructor assigns date

6. SubbyDubby overrideMe is called by the client

94

� remember to make sure that your base class
constructors only call final methods or private
methods

� if a base class constructor calls an overridden method, the
method will run in an unconstructed derived class

95

Other Methods

� methods in a subclass will often need or want to call
methods in the immediate superclass
� a new method in the subclass can call any public or
protected method in the superclass without using any
special syntax

� a subclass can override a public or protected
method in the superclass by declaring a method that
has the same signature as the one in the superclass

� a subclass method that overrides a superclass method can
call the overridden superclass method using the super
keyword

96

Dog equals

� we will assume that two Dogs are equal if their size
and energy are the same

@Override public boolean equals(Object obj)

{

boolean eq = false;

if(obj != null && this.getClass() == obj.getClass())

{

Dog other = (Dog) obj;

eq = this.getSize() == other.getSize() &&

this.getEnergy() == other.getEnergy();

}

return eq;

}

97

Mix equals (version 1)

� two Mix instances are equal if their Dog subobjects are
equal and they have the same breeds

@Override public boolean equals(Object obj)

{ // the hard way

boolean eq = false;

if(obj != null && this.getClass() == obj.getClass()) {

Mix other = (Mix) obj;

eq = this.getSize() == other.getSize() &&

this.getEnergy() == other.getEnergy() &&

this.breeds.size() == other.breeds.size() &&

this.breeds.containsAll(other.breeds);

}

return eq;

}
98

subclass can call
public method of
the superclass

Mix equals (version 2)

� two Mix instances are equal if their Dog subobjects are
equal and they have the same breeds

� Dog equals already tests if two Dog instances are equal

� Mix equals can call Dog equals to test if the Dog subobjects
are equal, and then test if the breeds are equal

� also notice that Dog equals already checks that the
Object argument is not null and that the classes are
the same

� Mix equals does not have to do these checks again

99

@Override public boolean equals(Object obj)

{

boolean eq = false;

if(super.equals(obj))

{ // the Dog subobjects are equal

Mix other = (Mix) obj;

eq = this.breeds.size() == other.breeds.size() &&

this.breeds.containsAll(other.breeds);

}

return eq;

}

100

subclass method that overrides a superclass
method can call the overridden superclass method

Dog toString

@Override public String toString()

{

String s = "size " + this.getSize() +

"energy " + this.getEnergy();

return s;

}

101

Mix toString

@Override public String toString()

{

StringBuffer b = new StringBuffer();

b.append(super.toString());

for(String s : this.breeds)

b.append(" " + s);

b.append(" mix");

return b.toString();

}

102

Dog hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

final int prime = 31;

int result = 1;

result = prime * result + this.getEnergy();

result = prime * result + this.getSize();

return result;

}

103

Mix hashCode

// similar to code generated by Eclipse

@Override public int hashCode()

{

final int prime = 31;

int result = super.hashCode();

result = prime * result + this.breeds.hashCode();

return result;

}

104

Mix Memory Diagram

105

500 Mix object

size 5

energy 5

breeds 1750

•inherited from superclass
•private in superclass
•not accessible by name to Mix

