
Mixing Static and Non-static

Singleton

1



Singleton Pattern
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� “There can be only one.”
� Connor MacLeod, Highlander



Singleton Pattern
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� a singleton is a class that is instantiated exactly once

� singleton is a well-known design pattern that can be 
used when you need to: 

1. ensure that there is one, and only one*, instance of a class, 
and

2. provide a global point of access to the instance

� any client that imports the package containing the singleton 
class can access the instance

[notes 3.4] *or possibly zero



One and Only One
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� how do you enforce this?

� need to prevent clients from creating instances of the 
singleton class
� private constructors

� the singleton class should create the one instance of itself
� note that the singleton class is allowed to call its own private

constructors

� need a static attribute to hold the instance



A Silly Example: Version 1
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package xmas;

public class Santa 

{

// whatever fields you want for santa...

public static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize attributes here... }

}

uses a public field that
all clients can access
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import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}



A Silly Example: Version 2
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package xmas;

public class Santa 

{

// whatever fields you want for santa...

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize attributes here... }

}

uses a private field; how
do clients access the field?



Global Access
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� how do clients access the singleton instance?

� by using a static method

� note that clients only need to import the package 
containing the singleton class to get access to the 
singleton instance

� any client method can use the singleton instance without 
mentioning the singleton in the parameter list



A Silly Example (cont)
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package xmas;

public class Santa {

private int numPresents;

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize fields here... }

public static Santa getInstance()

{ return Santa.INSTANCE; }

public Present givePresent() {

Present p = new Present(); 

this.numPresents--;

return p; 

}

}

uses a private field; how
do clients access the field?

clients use a public
static factory method



10

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.getInstance().givePresent();

}



Enumerations

� an enumeration is a special data type that enables for a 
variable to be a set of predefined constants

� the variable must be equal to one of the values that 
have been predefined for it

� e.g., compass directions

� NORTH, SOUTH, EAST, and WEST

� days of the week

� MONDAY, TUESDAY, WEDNESDAY, etc.

� playing card suits

� CLUBS, DIAMONDS, HEARTS, SPADES

� useful when you have a fixed set of constants

11



A Silly Example: Version 3
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package xmas;

public enum Santa 

{

// whatever fields you want for santa...

INSTANCE;

private Santa()

{ // initialize attributes here... }

}

singleton as an
enumeration

will call the private
default constructor
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import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}

same usage as public
field (Version 1)



Singleton as an enumeration 

� considered the preferred approach for implementing a 
singleton

� for reasons beyond the scope of CSE1030

� all enumerations are subclasses of java.lang.Enum

14



Applications

� singletons  should be uncommon

� typically used to represent a system component that is 
intrinsically unique

� window manager

� file system

� logging system

15



Logging
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� when developing a software program it is often useful 
to log information about the runtime state of your 
program
� similar to flight data recorder in an airplane

� a good log can help you find out what went wrong in your 
program

� problem: your program may have many classes, each of 
which needs to know where the single logging object is
� global point of access to a single object == singleton

� Java logging API is more sophisticated than this
� but it still uses a singleton to manage logging

� java.util.logging



Lazy Instantiation
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� notice that the previous singleton implementation 
always creates the singleton instance whenever the 
class is loaded

� if no client uses the instance then it was created needlessly

� it is possible to delay creation of the singleton instance 
until it is needed by using lazy instantiation

� only works for version 2



Lazy Instantiation as per Notes
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public class Santa {

private static Santa INSTANCE = null;

private Santa()

{ // ... }

public static Santa getInstance()

{

if (Santa.INSTANCE == null) {

Santa.INSTANCE = new Santa();

}

return Santa.INSTANCE;

}

}



Mixing Static and Non-static

Multiton

19



Goals for Today
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� Multiton

� review maps

� static factory methods



Singleton UML Class Diagram
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Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...



One Instance per State
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� the Java language specification guarantees that 
identical String literals are not duplicated

� prints: same object? true

� the compiler ensures that identical String literals all 
refer to the same object

� a single instance per unique state

// client code somewhere

String s1 = "xyz";

String s2 = "xyz";

// how many String instances are there?

System.out.println("same object? " + (s1 == s2) );

[notes 3.5]



Multiton
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� a singleton class manages a single instance of the class

� a multiton class manages multiple instances of the 
class

� what do you need to manage multiple instances?

� a collection of some sort

� how does the client request an instance with a 
particular state?

� it needs to pass the desired state as arguments to a method



Singleton vs Multiton UML Diagram
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Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

Multiton

- instances : Map

...

- Multiton()

+ getInstance(Object) : Multiton

...



Singleton vs Multiton
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� Singleton

� one instance

private static final Santa INSTANCE = new Santa();

� zero-parameter accessor

public static Santa getInstance()



Singleton vs Multiton
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� Multiton

� multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

� accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode) 



Map
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� a map stores key-value pairs

Map<String, PhoneNumber>

� values are put into the map using the key

key type value type

// client code somewhere

Map<String, PhoneNumber> m = 

new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648"

m.put(key, ago);

[AJ 16.2]
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� values can be retrieved from the map using only the key

� if the key is not in the map the value returned is null

// client code somewhere

Map<String, PhoneNumber> m = 

new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648";

m.put(key, ago);

PhoneNumber gallery = m.get(key);            // == ago

PhoneNumber art = m.get("4169796648");       // == ago

PhoneNumber pizza = m.get("4169671111"); // == null
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� a map is not allowed to hold duplicate keys
� if you re-use a key to insert a new object, the existing object 

corresponding to the key is removed and the new object inserted

// client code somewhere

Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648";

m.put(key, ago);                               // add ago

System.out.println(m);

m.put(key, new PhoneNumber(905, 760, 1911));   // replaces ago

System.out.println(m);

{4169796648=(416) 979-6648}

{4169796648=(905) 760-1911}

prints



Mutable Keys
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� from 
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

� Note: great care must be exercised if mutable objects are 
used as map keys. The behavior of a map is not specified if 
the value of an object is changed in a manner that affects 
equals comparisons while the object is a key in the map.
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public class MutableKey

{

public static void main(String[] args)

{

Map<Date, String> m = new TreeMap<Date, String>();

Date d1 = new Date(100, 0, 1);

Date d2 = new Date(100, 0, 2);

Date d3 = new Date(100, 0, 3);

m.put(d1, "Jan 1, 2000");

m.put(d2, "Jan 2, 2000");

m.put(d3, "Jan 3, 2000");

d2.setYear(101);           // mutator

System.out.println("d1 " + m.get(d1));  // d1 Jan 1, 2000

System.out.println("d2 " + m.get(d2));  // d2 Jan 2, 2000

System.out.println("d3 " + m.get(d3));  // d3 null

}

}
change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen



Making PhoneNumber a Multiton
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1. multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

2. accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

� getInstance() will get an instance from instances if the 
instance is in the map; otherwise, it will create the new 
instance and put it in the map



Making PhoneNumber a Multiton
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3. require private constructors

� to prevent clients from creating instances on their own
� clients should use getInstance()

4. require immutability of PhoneNumbers

� to prevent clients from modifying state, thus making the 
keys inconsistent with the PhoneNumbers stored in the map

� recall the recipe for immutability...
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public class PhoneNumber implements Comparable<PhoneNumber> 

{

private static final Map<String, PhoneNumber> instances = 

new TreeMap<String, PhoneNumber>();

private final short areaCode;

private final short exchangeCode;

private final short stationCode;

private PhoneNumber(int areaCode,

int exchangeCode,

int stationCode)

{ // identical to previous versions }
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public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

{

String key = "" + areaCode + exchangeCode + stationCode;

PhoneNumber n = PhoneNumber.instances.get(key);

if (n == null)

{

n = new PhoneNumber(areaCode, exchangeCode, stationCode);

PhoneNumber.instances.put(key, n);

}

return n;

}

// remainder of PhoneNumber class ...

why is validation not needed?
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public class PhoneNumberClient {

public static void main(String[] args)  

{

PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

System.out.println("x equals y: " + x.equals(y) +

" and x == y: " + (x == y)); 

System.out.println("x equals z: " + x.equals(z) +

" and x == z: " + (x == z));

}

}

x equals y: true and x == y: true

x equals z: false and x == z: false



Bonus Content
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� notice that Singleton and Multiton use a static method 
to return an instance of a class

� a static method that returns an instance of a class is 
called a static factory method

� factory because, as far as the client is concerned, the 
method creates an instance

� similar to a constructor



Static Factory Methods
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� many examples

� java.lang.Integer

public static Integer valueOf(int i)

� Returns a Integer instance representing the specified int value.

� java.util.Arrays

public static int[] copyOf(int[] original, int newLength)

� Copies the specified array, truncating or padding with zeros (if 
necessary) so the copy has the specified length.



Java API Static Factory Methods
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� java.lang.String

public static String format(String format, Object... args)

� Returns a formatted string using the specified format string and 
arguments. 

� cse1030.math.Complex

public static Complex fromPolar(double mag, double angle)

� Returns a reference to a new complex number given its polar form.
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� you can give meaningful names to static factory methods 
(unlike constructors)

public class Person {

private String name;

private int age;

private int weight;

public Person(String name, int age, int weight) { // ... }

public Person(String name, int age) { // ... }

public Person(String name, int weight) { // ... }

// ...

}

illegal overload: same signature



41

public class Person {  // modified from PEx's

// attributes ...

public Person(String name, int age, int weight) { // ... }

public static Person withAge(String name, int age) {

return new Person(name, age, DEFAULT_WEIGHT);

}

public static Person withWeight(String name, int weight) { 

return new Person(name, DEFAULT_AGE, weight); 

}

}



A Singleton Puzzle: What is Printed?
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public class Elvis {

public static final Elvis INSTANCE = new Elvis();

private final int beltSize;

private static final int CURRENT_YEAR =

Calendar.getInstance().get(Calendar.YEAR);

private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

public int getBeltSize() { return this.beltSize; }

public static void main(String[] args) {

System.out.println("Elvis has a belt size of " +

INSTANCE.getBeltSize());

}

}

from Java Puzzlers by Joshua Bloch and Neal Gafter



A Singleton Puzzle: What is Printed?
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public class Elvis {

public static final Elvis INSTANCE = new Elvis();

private final int beltSize;

private static final int CURRENT_YEAR =

Calendar.getInstance().get(Calendar.YEAR);

private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

public int getBeltSize() { return this.beltSize; }

public static void main(String[] args) {

System.out.println("Elvis has a belt size of " +

INSTANCE.getBeltSize());

}

}

from Java Puzzlers by Joshua Bloch and Neal Gafter



A Singleton Puzzle: Solution

� Elvis has a belt size of -1930 is printed

� to solve the puzzle you need to know how Java 
initializes classes (JLS 12.4)

� the call to main() triggers initialization of the Elvis
class (because main() belongs to the class Elvis)

� the static attributes INSTANCE and CURRENT_YEAR are 
first given default values (null and 0, respectively)

� then the attributes are initialized in order of 
appearance

44



1. public static final Elvis INSTANCE = new Elvis();

2. this.beltSize = CURRENT_YEAR – 1930;

3. private static final int CURRENT_YEAR = 

Calendar.getInstance().get(Calendar.YEAR);

• the problem occurs because initializing INSTANCE
requires a valid CURRENT_YEAR

• solution: move CURRENT_YEAR before INSTANCE

45

CURRENT_YEAR == 0

at this point



Aggregation and Composition

[notes Chapter 4]

46



Aggregation and Composition

� the terms aggregation and composition are used to 
describe a relationship between objects

� both terms describe the has-a relationship
� the university has-a collection of departments

� each department has-a collection of professors

47



Aggregation and Composition

� composition implies ownership
� if the university disappears then all of its departments disappear

� a university is a composition of departments

� aggregation does not imply ownership
� if a department disappears then the professors do not disappear

� a department is an aggregation of professors

48



Aggregation

� suppose a Person has a name and a date of birth

public class Person {

private String name;

private Date birthDate;

public Person(String name, Date birthDate) {

this.name = name;  

this.birthDate = birthDate;

}

public Date getBirthDate() {

return birthDate;

}

}

49



� the Person example uses aggregation

� notice that the constructor does not make a copy of the 
name and birth date objects passed to it

� the name and birth date objects are shared with the client

� both the client and the Person instance are holding 
references to the same name and birth date

50

// client code somewhere

String s = "Billy Bob";

Date d = new Date(91, 2, 26);  // March 26, 1991

Person p = new Person(s, d);
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64 client

s 250

d 350

p 450

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250

birthDate 350



� what happens when the client modifies the Date
instance?

� prints  Fri Nov 03 00:00:00 EST 1995

52

// client code somewhere

String s = "Billy Bob";

Date d = new Date(90, 2, 26);  // March 26, 1990

Person p = new Person(s, d);

d.setYear(95);                 // November 3, 1995

d.setMonth(10);

d.setDate(3);

System.out.println( p.getBirthDate() );



� because the Date instance is shared by the client and 
the Person instance:

� the client can modify the date using d and the Person
instance p sees a modified birthDate

� the Person instance p can modify the date using birthDate
and the client sees a modified date d

53



� note that even though the String instance is shared 
by the client and the Person instance p, neither the 
client nor p can modify the String

� immutable objects make great building blocks for other 
objects

� they can be shared freely without worrying about their state

54



UML Class Diagram for Aggregation
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Person StringDate

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation



Another Aggregation Example

� 3D videogames use models that are a three-
dimensional representations of geometric data

� the models may be represented by:

� three-dimensional points (particle systems)

� simple polygons (triangles, quadrilaterals)

� smooth, continuous surfaces (splines, parametric surfaces)

� an algorithm (procedural models)

� rendering the objects to the screen usually results in 
drawing triangles

� graphics cards have specialized hardware that does this very 
fast

56
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Aggregation Example

� a Triangle has 3 three-dimensional Points 

59

Triangle Point
3

Triangle

+ Triangle(Point, Point, Point)

+ getA() : Point

+ getB() : Point

+ getC() : Point

+ setA(Point) : void

+ setB(Point) : void

+ setC(Point) : void

Point

+ Point(double, double, double)

+ getX() : double

+ getY() : double

+ getZ() : double

+ setX(double) : void

+ setY(double) : void

+ setZ(double) : void



Triangle
// attributes and constructor

public class Triangle {

private Point pA;

private Point pB;

private Point pC;

public Triangle(Point c, Point b, Point c) {

this.pA = a;

this.pB = b;

this.pC = c;

}

60



Triangle
// accessors

public Point getA() {

return this.pA;

}

public Point getB() {

return this.pB;

}

public Point getC() {

return this.pC;

}

61



Triangle
// mutators

public void setA(Point p) {

this.pA = p;

}

public void setB(Point p) {

this.pB = p;

}

public void setC(Point p) {

this.pC = p;

}

}

62



Triangle Aggregation

� implementing Triangle is very easy

� attributes (3 Point references)

� are references to existing objects provided by the client

� accessors
� give clients a reference to the aggregated Points 

� mutators
� set attributes to existing Points provided by the client

� we say that the Triangle attributes are aliases

63



// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

64
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64 client

a 250

b 350

c 450

tri 550

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450



// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

Point d = tri.getA();

boolean sameObj = a == d;

66

client asks the triangle for one
of the triangle points and checks
if the point is the same object
that was used to create the triangle
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64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450



// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

Point d = tri.getA();

boolean sameObj = a == d;

tri.setC(d);

68

client asks the triangle to set
one point of the triangle to d
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64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250



// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

Point d = tri.getA();

boolean sameObj = a == d;

tri.setC(d);

b.setX(0.5);

b.setY(6.0);

b.setZ(2.0);

70

client changes the coordinates of
one of the points (without asking
the triangle for the point first)



71

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.5

y 6.0

z 2.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250



Triangle Aggregation

� if a client gets a reference to one of the triangle's 
points, then the client can change the position of the 
point without asking the triangle

� run demo program in class here

72
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pointB = new Point(0.0, 1.0, -3.0);

tri = new Triangle(new Point(-1.0, -1.0, -3.0),

pointB,

new Point(2.0, 0.0, -3.0));

// Draw triangle

gl.glBegin(GL2.GL_TRIANGLES);

gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color

gl.glVertex3d(tri.getA().getX(),

tri.getA().getY(),

tri.getA().getZ());

gl.glVertex3d(tri.getB().getX(),

tri.getB().getY(),

tri.getB().getZ());

gl.glVertex3d(tri.getC().getX(),

tri.getC().getY(),

tri.getC().getZ());

gl.glEnd();

// the client moves a point without help from the triangle

delta += 0.05f;

pointB.setY(1.0 + Math.sin(delta));

client and triangle
share a reference to
pointB

draw the triangle
by asking tri for
the coordinates
of each of its points

client uses pointB
to change the point
coordinates



Composition

74



Composition

� recall that an object of type X that is composed of an 
object of type Y means

� X has-a Y object and

� X owns the Y object

� in other words

75

the X object, and only the X object, is responsible for its Y object



Composition

� this means that the X object will generally not share 
references to its Y object with clients

� constructors will create new Y objects 

� accessors will return references to new Y objects 

� mutators will store references to new Y objects 

� the “new Y objects” are called defensive copies

76

the X object, and only the X object, is responsible for its Y object



Composition & the Default Constructor

� if a default constructor is defined it must create a 
suitable Y object

public X() 

{

// create a suitable Y; for example

this.y = new Y( /* suitable arguments */ );

}

77

the X object, and only the X object, is responsible for its Y object

defensive copy



Test Your Knowledge

1. Re-implement Triangle so that it is a composition of 
3 points. Start by adding a default constructor to 
Triangle that creates 3 new Point objects with 
suitable values.

78



Composition & Copy Constructor

� if a copy constructor is defined it must create a new Y
that is a deep copy of the other X object’s Y object

public X(X other) 

{

// create a new Y that is a copy of other.y

this.y = new Y(other.getY());

}

79

the X object, and only the X object, is responsible for its Y object

defensive copy



Composition & Copy Constructor

� what happens if the X copy constructor does not make 
a deep copy of the other X object’s Y object?

// don’t do this

public X(X other)

{

this.y = other.y;

}

� every X object created with the copy constructor ends up 
sharing its Y object

� if one X modifies its Y object, all X objects will end up with a 
modified Y object

� this is called a privacy leak

80



Test Your Knowledge

1. Suppose Y is an immutable type. Does the X copy 
constructor need to create a new Y? Why or why not?

2. Implement the Triangle copy constructor.

81
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3. Suppose you have a Triangle copy constructor and 
main method like so:

public Triangle(Triangle t)

{  this.pA = t.pA;  this.pB = t.pB;  this.pC = t.pC; }

public static void main(String[] args) {

Triangle t1 = new Triangle();

Triangle t2 = new Triangle(t1);

t1.getA().set( -100.0, -100.0, 5.0 );

System.out.println( t2.getA() );

}

What does the program print? How many Point
objects are there in memory? How many Point
objects should be in memory? 



Composition & Other Constructors

� a constructor that has a Y parameter must first deep 
copy and then validate the Y object

public X(Y y) 

{

// create a copy of y

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY; 

}

83

the X object, and only the X object, is responsible for its Y object

defensive copy



Composition and Other Constructors

� why is the deep copy required?

� if the constructor does this

// don’t do this for composition

public X(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak
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Test Your Knowledge

1. Suppose Y is an immutable type. Does the X
constructor need to copy the other X object’s Y 
object? Why or why not?

2. Implement the following Triangle constructor:
/**

* Create a Triangle from 3 points

* @param p1 The first point.

* @param p2 The second point.

* @param p3 The third point.

* @throws IllegalArgumentException if the 3 points are

*         not unique

*/
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invariant: the 3 points
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Composition and Accessors

� never return a reference to an attribute; always return a 
deep copy

public Y getY()

{

return new Y(this.y);

}
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Composition and Accessors

� why is the deep copy required?

� if the accessor does this

// don’t do this for composition

public Y getY() {

return this.y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak
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Test Your Knowledge

1. Suppose Y is an immutable type. Does the X accessor
need to copy it’s Y object before returning it? Why 
or why not?

2. Implement the following 3 Triangle accessors:
/**

* Get the first/second/third point of the triangle.

* @return The first/second/third point of the triangle

*/
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Test Your Knowledge

3. Given your Triangle accessors from question 2, 
can you write an improved Triangle copy 
constructor that does not make copies of the point 
attributes?
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Composition and Mutators

� if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep 
copy of the client-provided Y object and validate it

public void setY(Y y) 

{

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}
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Composition and Mutators

� why is the deep copy required?

� if the mutator does this

// don’t do this for composition

public void setY(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak
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Test Your Knowledge

1. Suppose Y is an immutable type. Does the X mutator
need to copy the Y object? Why or why not? Does it 
need to the validate the Y object?

2. Implement the following 3 Triangle mutators:
/**

* Set the first/second/third point of the triangle.

* @param p The desired first/second/third point of

*          the triangle.

* @return true if the point could be set;

*         false otherwise

*/
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Triangle has a class
invariant: the 3 points
of a Triangle are unique


