
Mixing Static and Non-static

Singleton

1

Singleton Pattern

2

� “There can be only one.”
� Connor MacLeod, Highlander

Singleton Pattern

3

� a singleton is a class that is instantiated exactly once

� singleton is a well-known design pattern that can be
used when you need to:

1. ensure that there is one, and only one*, instance of a class,
and

2. provide a global point of access to the instance

� any client that imports the package containing the singleton
class can access the instance

[notes 3.4] *or possibly zero

One and Only One

4

� how do you enforce this?

� need to prevent clients from creating instances of the
singleton class
� private constructors

� the singleton class should create the one instance of itself
� note that the singleton class is allowed to call its own private

constructors

� need a static attribute to hold the instance

A Silly Example: Version 1

5

package xmas;

public class Santa

{

// whatever fields you want for santa...

public static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize attributes here... }

}

uses a public field that
all clients can access

6

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}

A Silly Example: Version 2

7

package xmas;

public class Santa

{

// whatever fields you want for santa...

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize attributes here... }

}

uses a private field; how
do clients access the field?

Global Access

8

� how do clients access the singleton instance?

� by using a static method

� note that clients only need to import the package
containing the singleton class to get access to the
singleton instance

� any client method can use the singleton instance without
mentioning the singleton in the parameter list

A Silly Example (cont)

9

package xmas;

public class Santa {

private int numPresents;

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize fields here... }

public static Santa getInstance()

{ return Santa.INSTANCE; }

public Present givePresent() {

Present p = new Present();

this.numPresents--;

return p;

}

}

uses a private field; how
do clients access the field?

clients use a public
static factory method

10

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.getInstance().givePresent();

}

Enumerations

� an enumeration is a special data type that enables for a
variable to be a set of predefined constants

� the variable must be equal to one of the values that
have been predefined for it

� e.g., compass directions

� NORTH, SOUTH, EAST, and WEST

� days of the week

� MONDAY, TUESDAY, WEDNESDAY, etc.

� playing card suits

� CLUBS, DIAMONDS, HEARTS, SPADES

� useful when you have a fixed set of constants

11

A Silly Example: Version 3

12

package xmas;

public enum Santa

{

// whatever fields you want for santa...

INSTANCE;

private Santa()

{ // initialize attributes here... }

}

singleton as an
enumeration

will call the private
default constructor

13

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}

same usage as public
field (Version 1)

Singleton as an enumeration

� considered the preferred approach for implementing a
singleton

� for reasons beyond the scope of CSE1030

� all enumerations are subclasses of java.lang.Enum

14

Applications

� singletons should be uncommon

� typically used to represent a system component that is
intrinsically unique

� window manager

� file system

� logging system

15

Logging

16

� when developing a software program it is often useful
to log information about the runtime state of your
program
� similar to flight data recorder in an airplane

� a good log can help you find out what went wrong in your
program

� problem: your program may have many classes, each of
which needs to know where the single logging object is
� global point of access to a single object == singleton

� Java logging API is more sophisticated than this
� but it still uses a singleton to manage logging

� java.util.logging

Lazy Instantiation

17

� notice that the previous singleton implementation
always creates the singleton instance whenever the
class is loaded

� if no client uses the instance then it was created needlessly

� it is possible to delay creation of the singleton instance
until it is needed by using lazy instantiation

� only works for version 2

Lazy Instantiation as per Notes

18

public class Santa {

private static Santa INSTANCE = null;

private Santa()

{ // ... }

public static Santa getInstance()

{

if (Santa.INSTANCE == null) {

Santa.INSTANCE = new Santa();

}

return Santa.INSTANCE;

}

}

Mixing Static and Non-static

Multiton

19

Goals for Today

20

� Multiton

� review maps

� static factory methods

Singleton UML Class Diagram

21

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

One Instance per State

22

� the Java language specification guarantees that
identical String literals are not duplicated

� prints: same object? true

� the compiler ensures that identical String literals all
refer to the same object

� a single instance per unique state

// client code somewhere

String s1 = "xyz";

String s2 = "xyz";

// how many String instances are there?

System.out.println("same object? " + (s1 == s2));

[notes 3.5]

Multiton

23

� a singleton class manages a single instance of the class

� a multiton class manages multiple instances of the
class

� what do you need to manage multiple instances?

� a collection of some sort

� how does the client request an instance with a
particular state?

� it needs to pass the desired state as arguments to a method

Singleton vs Multiton UML Diagram

24

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

Multiton

- instances : Map

...

- Multiton()

+ getInstance(Object) : Multiton

...

Singleton vs Multiton

25

� Singleton

� one instance

private static final Santa INSTANCE = new Santa();

� zero-parameter accessor

public static Santa getInstance()

Singleton vs Multiton

26

� Multiton

� multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

� accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

Map

27

� a map stores key-value pairs

Map<String, PhoneNumber>

� values are put into the map using the key

key type value type

// client code somewhere

Map<String, PhoneNumber> m =

new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648"

m.put(key, ago);

[AJ 16.2]

28

� values can be retrieved from the map using only the key

� if the key is not in the map the value returned is null

// client code somewhere

Map<String, PhoneNumber> m =

new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648";

m.put(key, ago);

PhoneNumber gallery = m.get(key); // == ago

PhoneNumber art = m.get("4169796648"); // == ago

PhoneNumber pizza = m.get("4169671111"); // == null

29

� a map is not allowed to hold duplicate keys
� if you re-use a key to insert a new object, the existing object

corresponding to the key is removed and the new object inserted

// client code somewhere

Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648";

m.put(key, ago); // add ago

System.out.println(m);

m.put(key, new PhoneNumber(905, 760, 1911)); // replaces ago

System.out.println(m);

{4169796648=(416) 979-6648}

{4169796648=(905) 760-1911}

prints

Mutable Keys

30

� from
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

� Note: great care must be exercised if mutable objects are
used as map keys. The behavior of a map is not specified if
the value of an object is changed in a manner that affects
equals comparisons while the object is a key in the map.

31

public class MutableKey

{

public static void main(String[] args)

{

Map<Date, String> m = new TreeMap<Date, String>();

Date d1 = new Date(100, 0, 1);

Date d2 = new Date(100, 0, 2);

Date d3 = new Date(100, 0, 3);

m.put(d1, "Jan 1, 2000");

m.put(d2, "Jan 2, 2000");

m.put(d3, "Jan 3, 2000");

d2.setYear(101); // mutator

System.out.println("d1 " + m.get(d1)); // d1 Jan 1, 2000

System.out.println("d2 " + m.get(d2)); // d2 Jan 2, 2000

System.out.println("d3 " + m.get(d3)); // d3 null

}

}
change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen

Making PhoneNumber a Multiton

32

1. multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

2. accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

� getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

Making PhoneNumber a Multiton

33

3. require private constructors

� to prevent clients from creating instances on their own
� clients should use getInstance()

4. require immutability of PhoneNumbers

� to prevent clients from modifying state, thus making the
keys inconsistent with the PhoneNumbers stored in the map

� recall the recipe for immutability...

34

public class PhoneNumber implements Comparable<PhoneNumber>

{

private static final Map<String, PhoneNumber> instances =

new TreeMap<String, PhoneNumber>();

private final short areaCode;

private final short exchangeCode;

private final short stationCode;

private PhoneNumber(int areaCode,

int exchangeCode,

int stationCode)

{ // identical to previous versions }

35

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

{

String key = "" + areaCode + exchangeCode + stationCode;

PhoneNumber n = PhoneNumber.instances.get(key);

if (n == null)

{

n = new PhoneNumber(areaCode, exchangeCode, stationCode);

PhoneNumber.instances.put(key, n);

}

return n;

}

// remainder of PhoneNumber class ...

why is validation not needed?

36

public class PhoneNumberClient {

public static void main(String[] args)

{

PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

System.out.println("x equals y: " + x.equals(y) +

" and x == y: " + (x == y));

System.out.println("x equals z: " + x.equals(z) +

" and x == z: " + (x == z));

}

}

x equals y: true and x == y: true

x equals z: false and x == z: false

Bonus Content

37

� notice that Singleton and Multiton use a static method
to return an instance of a class

� a static method that returns an instance of a class is
called a static factory method

� factory because, as far as the client is concerned, the
method creates an instance

� similar to a constructor

Static Factory Methods

38

� many examples

� java.lang.Integer

public static Integer valueOf(int i)

� Returns a Integer instance representing the specified int value.

� java.util.Arrays

public static int[] copyOf(int[] original, int newLength)

� Copies the specified array, truncating or padding with zeros (if
necessary) so the copy has the specified length.

Java API Static Factory Methods

39

� java.lang.String

public static String format(String format, Object... args)

� Returns a formatted string using the specified format string and
arguments.

� cse1030.math.Complex

public static Complex fromPolar(double mag, double angle)

� Returns a reference to a new complex number given its polar form.

40

� you can give meaningful names to static factory methods
(unlike constructors)

public class Person {

private String name;

private int age;

private int weight;

public Person(String name, int age, int weight) { // ... }

public Person(String name, int age) { // ... }

public Person(String name, int weight) { // ... }

// ...

}

illegal overload: same signature

41

public class Person { // modified from PEx's

// attributes ...

public Person(String name, int age, int weight) { // ... }

public static Person withAge(String name, int age) {

return new Person(name, age, DEFAULT_WEIGHT);

}

public static Person withWeight(String name, int weight) {

return new Person(name, DEFAULT_AGE, weight);

}

}

A Singleton Puzzle: What is Printed?

42

public class Elvis {

public static final Elvis INSTANCE = new Elvis();

private final int beltSize;

private static final int CURRENT_YEAR =

Calendar.getInstance().get(Calendar.YEAR);

private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

public int getBeltSize() { return this.beltSize; }

public static void main(String[] args) {

System.out.println("Elvis has a belt size of " +

INSTANCE.getBeltSize());

}

}

from Java Puzzlers by Joshua Bloch and Neal Gafter

A Singleton Puzzle: What is Printed?

43

public class Elvis {

public static final Elvis INSTANCE = new Elvis();

private final int beltSize;

private static final int CURRENT_YEAR =

Calendar.getInstance().get(Calendar.YEAR);

private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

public int getBeltSize() { return this.beltSize; }

public static void main(String[] args) {

System.out.println("Elvis has a belt size of " +

INSTANCE.getBeltSize());

}

}

from Java Puzzlers by Joshua Bloch and Neal Gafter

A Singleton Puzzle: Solution

� Elvis has a belt size of -1930 is printed

� to solve the puzzle you need to know how Java
initializes classes (JLS 12.4)

� the call to main() triggers initialization of the Elvis
class (because main() belongs to the class Elvis)

� the static attributes INSTANCE and CURRENT_YEAR are
first given default values (null and 0, respectively)

� then the attributes are initialized in order of
appearance

44

1. public static final Elvis INSTANCE = new Elvis();

2. this.beltSize = CURRENT_YEAR – 1930;

3. private static final int CURRENT_YEAR =

Calendar.getInstance().get(Calendar.YEAR);

• the problem occurs because initializing INSTANCE
requires a valid CURRENT_YEAR

• solution: move CURRENT_YEAR before INSTANCE

45

CURRENT_YEAR == 0

at this point

Aggregation and Composition

[notes Chapter 4]

46

Aggregation and Composition

� the terms aggregation and composition are used to
describe a relationship between objects

� both terms describe the has-a relationship
� the university has-a collection of departments

� each department has-a collection of professors

47

Aggregation and Composition

� composition implies ownership
� if the university disappears then all of its departments disappear

� a university is a composition of departments

� aggregation does not imply ownership
� if a department disappears then the professors do not disappear

� a department is an aggregation of professors

48

Aggregation

� suppose a Person has a name and a date of birth

public class Person {

private String name;

private Date birthDate;

public Person(String name, Date birthDate) {

this.name = name;

this.birthDate = birthDate;

}

public Date getBirthDate() {

return birthDate;

}

}

49

� the Person example uses aggregation

� notice that the constructor does not make a copy of the
name and birth date objects passed to it

� the name and birth date objects are shared with the client

� both the client and the Person instance are holding
references to the same name and birth date

50

// client code somewhere

String s = "Billy Bob";

Date d = new Date(91, 2, 26); // March 26, 1991

Person p = new Person(s, d);

51

64 client

s 250

d 350

p 450

...

250 String object

...

...

350 Date object

...

...

450 Person object

name 250

birthDate 350

� what happens when the client modifies the Date
instance?

� prints Fri Nov 03 00:00:00 EST 1995

52

// client code somewhere

String s = "Billy Bob";

Date d = new Date(90, 2, 26); // March 26, 1990

Person p = new Person(s, d);

d.setYear(95); // November 3, 1995

d.setMonth(10);

d.setDate(3);

System.out.println(p.getBirthDate());

� because the Date instance is shared by the client and
the Person instance:

� the client can modify the date using d and the Person
instance p sees a modified birthDate

� the Person instance p can modify the date using birthDate
and the client sees a modified date d

53

� note that even though the String instance is shared
by the client and the Person instance p, neither the
client nor p can modify the String

� immutable objects make great building blocks for other
objects

� they can be shared freely without worrying about their state

54

UML Class Diagram for Aggregation

55

Person StringDate

1 1

number of Date
objects each Person has

number of String
objects each Person has

open diamonds
indicate aggregation

Another Aggregation Example

� 3D videogames use models that are a three-
dimensional representations of geometric data

� the models may be represented by:

� three-dimensional points (particle systems)

� simple polygons (triangles, quadrilaterals)

� smooth, continuous surfaces (splines, parametric surfaces)

� an algorithm (procedural models)

� rendering the objects to the screen usually results in
drawing triangles

� graphics cards have specialized hardware that does this very
fast

56

57

58

Aggregation Example

� a Triangle has 3 three-dimensional Points

59

Triangle Point
3

Triangle

+ Triangle(Point, Point, Point)

+ getA() : Point

+ getB() : Point

+ getC() : Point

+ setA(Point) : void

+ setB(Point) : void

+ setC(Point) : void

Point

+ Point(double, double, double)

+ getX() : double

+ getY() : double

+ getZ() : double

+ setX(double) : void

+ setY(double) : void

+ setZ(double) : void

Triangle
// attributes and constructor

public class Triangle {

private Point pA;

private Point pB;

private Point pC;

public Triangle(Point c, Point b, Point c) {

this.pA = a;

this.pB = b;

this.pC = c;

}

60

Triangle
// accessors

public Point getA() {

return this.pA;

}

public Point getB() {

return this.pB;

}

public Point getC() {

return this.pC;

}

61

Triangle
// mutators

public void setA(Point p) {

this.pA = p;

}

public void setB(Point p) {

this.pB = p;

}

public void setC(Point p) {

this.pC = p;

}

}

62

Triangle Aggregation

� implementing Triangle is very easy

� attributes (3 Point references)

� are references to existing objects provided by the client

� accessors
� give clients a reference to the aggregated Points

� mutators
� set attributes to existing Points provided by the client

� we say that the Triangle attributes are aliases

63

// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

64

65

64 client

a 250

b 350

c 450

tri 550

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

Point d = tri.getA();

boolean sameObj = a == d;

66

client asks the triangle for one
of the triangle points and checks
if the point is the same object
that was used to create the triangle

67

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 450

// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

Point d = tri.getA();

boolean sameObj = a == d;

tri.setC(d);

68

client asks the triangle to set
one point of the triangle to d

69

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.0

y 1.0

z -3.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

// client code

Point a = new Point(-1.0, -1.0, -3.0);

Point b = new Point(0.0, 1.0, -3.0);

Point c = new Point(2.0, 0.0, -3.0);

Triangle tri = new Triangle(a, b, c);

Point d = tri.getA();

boolean sameObj = a == d;

tri.setC(d);

b.setX(0.5);

b.setY(6.0);

b.setZ(2.0);

70

client changes the coordinates of
one of the points (without asking
the triangle for the point first)

71

64 client

a 250

b 350

c 450

tri 550

d 250

sameObj true

250 Point object

x -1.0

y -1.0

z -3.0

350 Point object

x 0.5

y 6.0

z 2.0

450 Point object

x 2.0

y 0.0

z -3.0

550 Triangle object

pA 250

pB 350

pC 250

Triangle Aggregation

� if a client gets a reference to one of the triangle's
points, then the client can change the position of the
point without asking the triangle

� run demo program in class here

72

73

pointB = new Point(0.0, 1.0, -3.0);

tri = new Triangle(new Point(-1.0, -1.0, -3.0),

pointB,

new Point(2.0, 0.0, -3.0));

// Draw triangle

gl.glBegin(GL2.GL_TRIANGLES);

gl.glColor3f(0.0f, 1.0f, 1.0f); // set the color

gl.glVertex3d(tri.getA().getX(),

tri.getA().getY(),

tri.getA().getZ());

gl.glVertex3d(tri.getB().getX(),

tri.getB().getY(),

tri.getB().getZ());

gl.glVertex3d(tri.getC().getX(),

tri.getC().getY(),

tri.getC().getZ());

gl.glEnd();

// the client moves a point without help from the triangle

delta += 0.05f;

pointB.setY(1.0 + Math.sin(delta));

client and triangle
share a reference to
pointB

draw the triangle
by asking tri for
the coordinates
of each of its points

client uses pointB
to change the point
coordinates

Composition

74

Composition

� recall that an object of type X that is composed of an
object of type Y means

� X has-a Y object and

� X owns the Y object

� in other words

75

the X object, and only the X object, is responsible for its Y object

Composition

� this means that the X object will generally not share
references to its Y object with clients

� constructors will create new Y objects

� accessors will return references to new Y objects

� mutators will store references to new Y objects

� the “new Y objects” are called defensive copies

76

the X object, and only the X object, is responsible for its Y object

Composition & the Default Constructor

� if a default constructor is defined it must create a
suitable Y object

public X()

{

// create a suitable Y; for example

this.y = new Y(/* suitable arguments */);

}

77

the X object, and only the X object, is responsible for its Y object

defensive copy

Test Your Knowledge

1. Re-implement Triangle so that it is a composition of
3 points. Start by adding a default constructor to
Triangle that creates 3 new Point objects with
suitable values.

78

Composition & Copy Constructor

� if a copy constructor is defined it must create a new Y
that is a deep copy of the other X object’s Y object

public X(X other)

{

// create a new Y that is a copy of other.y

this.y = new Y(other.getY());

}

79

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition & Copy Constructor

� what happens if the X copy constructor does not make
a deep copy of the other X object’s Y object?

// don’t do this

public X(X other)

{

this.y = other.y;

}

� every X object created with the copy constructor ends up
sharing its Y object

� if one X modifies its Y object, all X objects will end up with a
modified Y object

� this is called a privacy leak

80

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X copy
constructor need to create a new Y? Why or why not?

2. Implement the Triangle copy constructor.

81

82

3. Suppose you have a Triangle copy constructor and
main method like so:

public Triangle(Triangle t)

{ this.pA = t.pA; this.pB = t.pB; this.pC = t.pC; }

public static void main(String[] args) {

Triangle t1 = new Triangle();

Triangle t2 = new Triangle(t1);

t1.getA().set(-100.0, -100.0, 5.0);

System.out.println(t2.getA());

}

What does the program print? How many Point
objects are there in memory? How many Point
objects should be in memory?

Composition & Other Constructors

� a constructor that has a Y parameter must first deep
copy and then validate the Y object

public X(Y y)

{

// create a copy of y

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

83

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Other Constructors

� why is the deep copy required?

� if the constructor does this

// don’t do this for composition

public X(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak

84

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X
constructor need to copy the other X object’s Y
object? Why or why not?

2. Implement the following Triangle constructor:
/**

* Create a Triangle from 3 points

* @param p1 The first point.

* @param p2 The second point.

* @param p3 The third point.

* @throws IllegalArgumentException if the 3 points are

* not unique

*/

85

Triangle has a class
invariant: the 3 points
of a Triangle are unique

Composition and Accessors

� never return a reference to an attribute; always return a
deep copy

public Y getY()

{

return new Y(this.y);

}

86

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Accessors

� why is the deep copy required?

� if the accessor does this

// don’t do this for composition

public Y getY() {

return this.y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak

87

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X accessor
need to copy it’s Y object before returning it? Why
or why not?

2. Implement the following 3 Triangle accessors:
/**

* Get the first/second/third point of the triangle.

* @return The first/second/third point of the triangle

*/

88

Test Your Knowledge

3. Given your Triangle accessors from question 2,
can you write an improved Triangle copy
constructor that does not make copies of the point
attributes?

89

Composition and Mutators

� if X has a method that sets its Y object to a client-
provided Y object then the method must make a deep
copy of the client-provided Y object and validate it

public void setY(Y y)

{

Y copyY = new Y(y);

// validate; will throw an exception if copyY is invalid

this.checkY(copyY);

this.y = copyY;

}

90

the X object, and only the X object, is responsible for its Y object

defensive copy

Composition and Mutators

� why is the deep copy required?

� if the mutator does this

// don’t do this for composition

public void setY(Y y) {

this.y = y;

}

then the client and the X object will share the same Y object

� this is called a privacy leak

91

the X object, and only the X object, is responsible for its Y object

Test Your Knowledge

1. Suppose Y is an immutable type. Does the X mutator
need to copy the Y object? Why or why not? Does it
need to the validate the Y object?

2. Implement the following 3 Triangle mutators:
/**

* Set the first/second/third point of the triangle.

* @param p The desired first/second/third point of

* the triangle.

* @return true if the point could be set;

* false otherwise

*/

92

Triangle has a class
invariant: the 3 points
of a Triangle are unique

