
Mutable Classes (cont)

1

Constructors

2

public Vector2D(double x, double y, String name) {

this.x = x;

this.y = y;

this.name = name;

}

public Vector2D() {

this(0, 0, null);

}

public Vector2D(double x, double y) {

this(x, y, null);

}

public Vector2D(Vector2D other) {

this(other.x, other.y, other.name);

}

invokes

invokes

invokes

Constructor Chaining

� when a constructor invokes another constructor it is
called constructor chaining

� to invoke a constructor in the same class you use the
this keyword

� if you do this then it must occur on the first line of the
constructor body

3

Accessor Methods

� recall that accessor methods return information about
the state of the object
� for Vector2Dwe need to return information about x, y,

and name

� we have 3 accessor methods

4

double getX()

Get the x coordinate of the vector.

double getY()

Get the y coordinate of the vector.

String getName()

Get the name of the vector.

Accessor Methods

5

public double getX() {

return this.x;

}

public double getY() {

return this.y;

}

public double getName() {

return this.name;

}

Mutator Methods

� recall that mutator methods allow a client to
manipulate the state of the object
� for Vector2Dwe need to allow the client to manipulate x,
y, and name

6

Mutator Methods

� we have 5 mutator methods

7

void setX(double x)

Set the x coordinate of the vector.

void setY(double y)

Set the y coordinate of the vector.

void setName(String name)

Set the name of the vector.

void set(double x, double y)

Set the x and y coordinate of the vector

void set(String name, double x, double y)

Set the name, x, and y coordinate of the vector

setX(), setY(), and set()

8

public void setX(double x) {

this.x = x;

}

public void setY(double y) {

this.y = y;

}

public void setName(String name) {

this.name = name;

}

public void set(double x, double y) {

this.setX(x);

this.setY(y);

}

public void set(String name, double x, double y) {

this.setName(name);

this.set(x, y);

}

Equals

� recall that most value type classes will want their own
version of equals

� we shall say that two vectors are equal if their x, and y
coordinates are equal

� i.e., two vectors might be equal even if their names are different

9

boolean equals(Object obj)

Compares two vectors for equality.

equals()

10

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

return eq;

}

11

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

}

return eq;

}

12

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

Vector2d other = (Vector2d) obj;

}

return eq;

}

13

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

Vector2d other = (Vector2d) obj;

eq = this.getX() == other.getX() &&

this.getY() == other.getY();

}

return eq;

}

This version works most of the time (except when it doesn’t!)

14

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

Vector2d other = (Vector2d) obj;

eq = Double.compare(this.getX(), other.getX()) == 0 &&

Double.compare(this.getY(), other.getY()) == 0;

}

return eq;

}

This version always works.

== vs Double.compare

� the issue here is quite subtle

� if you use == to compare the coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be false because NaN == NaN is always false

� NaN means “not a number” and is used to represent a
mathematically undefined number

� such as occurs when you divide zero by zero

� the behavior of NaN is defined in the IEEE 754 standard for
floating point arithmetic (i.e., this is not just a Java issue)

15

== vs Double.compare

� if you use == to compare the coordinates then all hash
based collections and all sets will behave strangely
with vectors having NaN as a component

Set<Vector2D> set = new HashSet<Vector2D>();

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

set.add(u);

set.add(v);

System.out.println(set.size()); // prints 2

� sets are supposed to reject duplicate elements but
there are 2 identical vectors in set

� occurs because Set uses equals to check for duplicates

16

== vs Double.compare

� if you use Double.compare to compare the
coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be true because Double.compare is
implemented to allow for equality of NaN

� checking for equality of NaN can be useful when trying
to track down errors in computations

� also the hash based collections and sets will work as
expected

17

== vs Double.compare

� there is a side effect of using Double.compare to
compare the coordinates

Vector2D u = new Vector2D(0.0, 1.0); // (0.0, 1.0)

Vector2D v = new Vector2D(-0.0, 1.0); // (-0.0, 1.0)

boolean eq = u.equals(v);

eq will be false because Double.compare considers
0.0 and -0.0 to be unequal

� can you see how to implement equals to allow for equality
of NaN and equality of 0.0 and -0.0?

18

== vs Double.compare

� the real issue here is that floating point arithmetic is
tricky and affects every programming language

� a good starting point for learning more about some of
the issues involved

� http://floating-point-gui.de/

19

Observe That...

20

� instead of directly using the fields, we use accessor
methods where possible

� this reduces code duplication, especially if accessing an
field requires a lot of code

� this gives us the possibility to change the representation of
the fields in the future

� as long as we update the accessor methods (but we would have to
do that anyway to preserve the API)

� for example, instead of two attributes x and y, we might want to
use an array or some sort of Collection

� the notes [notes 2.3.1] call this delegating to accessors

Observe That...

21

� instead of directly modifying the attributes, we use
mutator methods where possible

� this reduces code duplication, especially if modifying an
attribute requires a lot of code

� this gives us the possibility to change the representation of
the attributes in the future

� as long as we update the mutator methods (but we would have to
do that anyway to preserve the API)

� for example, instead of two attributes x and y, we might
want to use an array or some sort of Collection

� the notes [notes 2.3.1] call this delegating to mutators

Things to Think About

22

� how do you implement Vector2D using an array to
store the coordinates?

� how do you implement Vector2D using a
Collection to store the coordinates?

� how do you implement VectorND, an N-dimensional
vector?

hashCode and compareTo

23

hashCode()

24

� if you override equals() you must override
hashCode()

� otherwise, the hashed containers won't work properly
� recall that we did not override hashCode() for PhoneNumber

// client code somewhere

PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();

h.add(pizza);

System.out.println(h.contains(pizza)); // true

PhoneNumber pizzapizza =

new PhoneNumber(416, 967, 1111);

System.out.println(h.contains(pizzapizza)); // false

[notes 2.3.5]

Arrays as Containers

25

� suppose you have an array of unique PhoneNumbers

� how do you compute whether or not the array contains a
particular PhoneNumber?

public static boolean

hasPhoneNumber(PhoneNumber p,

PhoneNumber[] numbers)

{

if (numbers != null) {

for(PhoneNumber num : numbers) {

if (num.equals(p)) {

return true;

}

}

}

return false;

}

26

� called linear search or sequential search

� doubling the length of the array doubles the amount of
searching we need to do

� if there are n PhoneNumbers in the array:

� best case
� the first PhoneNumber is the one we are searching for

� 1 call to equals()

� worst case
� the PhoneNumber is not in the array

� n calls to equals()

� average case
� the PhoneNumber is somewhere in the middle of the array

� approximately (n/2) calls to equals()

Hash Tables

27

� you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

0 1 2 3 ... N

Insertion into a Hash Table

28

� to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

0 1 2 3 ... N

a.hashCode() 2a

b.hashCode() 0b

c.hashCode() Nc
d.hashCode() Nd

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Insertion into a Hash Table

29

� to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

b a c

d

0 1 2 3 ... N

Search on a Hash Table

30

� to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

Search on a Hash Table

31

� to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

32

� searching a hash table is usually much faster than
linear search
� doubling the number of elements in the hash table usually

does not noticably increase the amount of search needed

� if there are n PhoneNumbers in the hash table:
� best case

� the bucket is empty, or the first PhoneNumber in the bucket is
the one we are searching for
� 0 or 1 call to equals()

� worst case
� all n of the PhoneNumbers are in the same bucket

� n calls to equals()

� average case
� the PhoneNumber is in a bucket with a small number of other
PhoneNumbers

� a small number of calls to equals()

Object hashCode()

33

� if you don't override hashCode(), you get the
implementation from Object.hashCode()

� Object.hashCode() uses the memory address of the object
to compute the hash code

34

� note that pizza and pizzapizza are distinct objects

� therefore, their memory locations must be different

� therefore, their hash codes are different (probably)

� therefore, the hash table looks in the wrong bucket (probably)
and does not find the phone number even though
pizzapizza.equals(pizza) *

// client code somewhere

PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();

h.add(pizza);

PhoneNumber pizzapizza = new PhoneNumber(416, 967, 1111);

System.out.println(h.contains(pizzapizza)); // false

* unless you're from Naples

A Bad (but legal) hashCode()

35

public final class PhoneNumber {

// attributes, constructors, methods ...

@Override public int hashCode()

{

return 1; // or any other constant int

}

}

� this will cause a hashed container to put all
PhoneNumbers in the same bucket

A Slightly Better hashCode()

36

public final class PhoneNumber {

// attributes, constructors, methods ...

@Override public int hashCode()

{

return (int)(this.getAreaCode() +

this.getExchangeCode() +

this.getStationCode());

}

}

37

� the basic idea is generate a hash code using the
attributes of the object

� it would be nice if two distinct objects had two distinct
hash codes

� but this is not required; two different objects can have the
same hash code

� it is required that:

1. if x.equals(y) then x.hashCode() == y.hashCode()

2. x.hashCode() always returns the same value if x does not
change its state

Something to Think About

38

� what do you need to be careful of when putting a
mutable object into a HashSet?

� can you avoid the problem by using immutable objects?

compareTo

39

Comparable Objects

40

� many value types have a natural ordering

� that is, for two objects x and y, x is less than y is
meaningful
� Short, Integer, Float, Double, etc

� Strings can be compared in dictionary order

� Dates can be compared in chronological order

� you might compare Vector2Ds by their length

� Dies can be compared by their face value

� if your class has a natural ordering, consider
implementing the Comparable interface

� doing so allows clients to sort arrays or Collections of your
object

Interfaces

41

� an interface is (usually) a group of related methods
with empty bodies

� the Comparable interface has just one method

public interface Comparable<T>

{

int compareTo(T t);

}

� a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

42

� Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

� Throws a ClassCastException if the specified object
type cannot be compared to this object.

Die compareTo()

43

public class Die implements Comparable<Die> {

// attributes, constructors, methods ...

public int compareTo(Die other) {

int result = 0;

if (this.getValue() < other.getValue()) {

result = -1;

}

else if (this.getValue() > other.getValue()) {

result = 1;

}

return result;

}

}

Die compareTo()

44

� the following also works for the Die class, but is
dangerous in general:

public int compareTo(Die other) {

int result = this.getValue() – other.getValue();

return result;

}

Comparable Contract

45

1. the sign of the returned int must flip if the order of
the two compared objects flip

� if x.compareTo(y) > 0 then y.compareTo(x) < 0

� if x.compareTo(y) < 0 then y.compareTo(x) > 0

� if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

46

2. compareTo() must be transitive

� if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

� if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

� if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

47

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

Consistency with equals

48

� an implementation of compareTo() is said to be
consistent with equals() when

if x.compareTo(y) == 0 then

x.equals(y) == true

� and

if x.equals(y) == true then

x.compareTo(y) == 0

Not in the Comparable Contract

49

� it is not required that compareTo() be consistent with
equals()

� that is

if x.compareTo(y) == 0 then

x.equals(y) == false is acceptable

� similarly

if x.equals(y) == true then

x.compareTo(y) != 0 is acceptable

� try to come up with examples for both cases above

Implementing compareTo

� implementing compareTo is similar to implementing
equals

� you need to compare all of the fields

� starting with the field that is most significant for ordering
purposes and working your way down

50

PhoneNumber compareTo()

51

public class PhoneNumber implements Comparable<PhoneNumber> {

// attributes, constructors, methods ...

public int compareTo(PhoneNumber other) {

int result = 0;

result = this.getAreaCode() – other.getAreaCode();

if (result == 0) {

result = this.getExchangeCode() – other.getExchangeCode();

}

if (result == 0) {

result = this.getStationCode() – other.getStationCode();

}

return result;

}

}

Implementing compareTo

� if you are comparing fields of type float or double
you should use Float.compare or
Double.compare instead of <, >, or ==

� if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically
� TreeSet, TreeMap

� many methods in the utility classes Collections and
Arrays

52

Mixing Static and Non-Static

53

static Fields

54

� a field that is static is a per-class member

� only one copy of the field, and the field is associated with
the class

� every object created from a class declaring a static field shares the
same copy of the field

� static fields are used when you really want only one
common instance of the field for the class

� less common than non-static fields

Example

55

� a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Sun's Java Tutorial

public class Bicycle {

// some other fields here...

private static int numberOfBicycles = 0;

public Bicycle() {

// set some attributes here...

Bicycle.numberOfBicycles++;

}

public static int getNumberOfBicyclesCreated() {

return Bicycle.numberOfBicycles;

}

}

note:
not this.numberOfBicycles++

[notes 3.2]

56

� another common example is to count the number of
times a method has been called

public class X {

private static int numTimesXCalled = 0;

private static int numTimesYCalled = 0;

public void xMethod() {

// do something... and then update counter

++X.numTimesXCalled;

}

public void yMethod() {

// do something... and then update counter

++X.numTimesYCalled;

}

}

Mixing Static and Non-static Fields

57

� a class can declare static (per class) and non-static (per
instance) fields

� a common textbook example is giving each instance a
unique serial number

� the serial number belongs to the instance

� therefore it must be a non-static field

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

// ...

58

� how do you assign each instance a unique serial
number?

� the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

� could require that the client provide a serial number
using the constructor

� instance has no guarantee that the client has provided a
valid (unique) serial number

59

� the class can provide unique serial numbers using
static fields

� e.g. using the number of instances created as a serial
number

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.numberOfBicycles;

Bicycle.numberOfBicycles++;

}

}

60

� a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private static final

SerialGenerator serialSource = new SerialGenerator();

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.serialSource.getNext();

Bicycle.numberOfBicycles++;

}

}

Static Methods

61

� recall that a static method is a per-class method

� client does not need an object to invoke the method

� client uses the class name to access the method

� a static method can only use static fields of the
class

� static methods have no this parameter because a static
method can be invoked without an object

� without a this parameter, there is no way to access non-
static fields

� non-static methods can use all of the fields of a class
(including static ones)

62

public class Bicycle {

// some attributes, constructors, methods here...

public static int getNumberCreated()

{

return Bicycle.numberOfBicycles;

}

public int getSerialNumber()

{

return this.serialNumber;

}

public void setNewSerialNumber()

{

this.serialNumber = Bicycle.serialSource.getNext();

}

}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

Mixing Static and Non-static

Singleton

63

Singleton Pattern

64

� “There can be only one.”
� Connor MacLeod, Highlander

Singleton Pattern

65

� a singleton is a class that is instantiated exactly once

� singleton is a well-known design pattern that can be
used when you need to:

1. ensure that there is one, and only one*, instance of a class,
and

2. provide a global point of access to the instance

� any client that imports the package containing the singleton
class can access the instance

[notes 3.4] *or possibly zero

One and Only One

66

� how do you enforce this?

� need to prevent clients from creating instances of the
singleton class
� private constructors

� the singleton class should create the one instance of itself
� note that the singleton class is allowed to call its own private

constructors

� need a static attribute to hold the instance

A Silly Example: Version 1

67

package xmas;

public class Santa

{

// whatever fields you want for santa...

public static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize attributes here... }

}

uses a public field that
all clients can access

68

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}

A Silly Example: Version 2

69

package xmas;

public class Santa

{

// whatever fields you want for santa...

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize attributes here... }

}

uses a private field; how
do clients access the field?

Global Access

70

� how do clients access the singleton instance?

� by using a static method

� note that clients only need to import the package
containing the singleton class to get access to the
singleton instance

� any client method can use the singleton instance without
mentioning the singleton in the parameter list

A Silly Example (cont)

71

package xmas;

public class Santa {

private int numPresents;

private static final Santa INSTANCE = new Santa();

private Santa()

{ // initialize fields here... }

public static Santa getInstance()

{ return Santa.INSTANCE; }

public Present givePresent() {

Present p = new Present();

this.numPresents--;

return p;

}

}

uses a private field; how
do clients access the field?

clients use a public
static factory method

72

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.getInstance().givePresent();

}

Enumerations

� an enumeration is a special data type that enables for a
variable to be a set of predefined constants

� the variable must be equal to one of the values that
have been predefined for it

� e.g., compass directions

� NORTH, SOUTH, EAST, and WEST

� days of the week

� MONDAY, TUESDAY, WEDNESDAY, etc.

� playing card suits

� CLUBS, DIAMONDS, HEARTS, SPADES

� useful when you have a fixed set of constants

73

A Silly Example: Version 3

74

package xmas;

public enum Santa

{

// whatever fields you want for santa...

INSTANCE;

private Santa()

{ // initialize attributes here... }

}

singleton as an
enumeration

will call the private
default constructor

75

import xmas;

// client code in a method somewhere ...

public void gimme()

{

Santa.INSTANCE.givePresent();

}

same usage as public
field (Version 1)

Singleton as an enumeration

� considered the preferred approach for implementing a
singleton

� for reasons beyond the scope of CSE1030

� all enumerations are subclasses of java.lang.Enum

76

Applications

� singletons should be uncommon

� typically used to represent a system component that is
intrinsically unique

� window manager

� file system

� logging system

77

Logging

78

� when developing a software program it is often useful
to log information about the runtime state of your
program
� similar to flight data recorder in an airplane

� a good log can help you find out what went wrong in your
program

� problem: your program may have many classes, each of
which needs to know where the single logging object is
� global point of access to a single object == singleton

� Java logging API is more sophisticated than this
� but it still uses a singleton to manage logging

� java.util.logging

Lazy Instantiation

79

� notice that the previous singleton implementation
always creates the singleton instance whenever the
class is loaded

� if no client uses the instance then it was created needlessly

� it is possible to delay creation of the singleton instance
until it is needed by using lazy instantiation

� only works for version 2

Lazy Instantiation as per Notes

80

public class Santa {

private static Santa INSTANCE = null;

private Santa()

{ // ... }

public static Santa getInstance()

{

if (Santa.INSTANCE == null) {

Santa.INSTANCE = new Santa();

}

return Santa.INSTANCE;

}

}

Mixing Static and Non-static

Multiton

81

Goals for Today

82

� Multiton

� review maps

� static factory methods

Singleton UML Class Diagram

83

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

One Instance per State

84

� the Java language specification guarantees that
identical String literals are not duplicated

� prints: same object? true

� the compiler ensures that identical String literals all
refer to the same object

� a single instance per unique state

// client code somewhere

String s1 = "xyz";

String s2 = "xyz";

// how many String instances are there?

System.out.println("same object? " + (s1 == s2));

[notes 3.5]

Multiton

85

� a singleton class manages a single instance of the class

� a multiton class manages multiple instances of the
class

� what do you need to manage multiple instances?

� a collection of some sort

� how does the client request an instance with a
particular state?

� it needs to pass the desired state as arguments to a method

Singleton vs Multiton UML Diagram

86

Singleton

- INSTANCE : Singleton

...

- Singleton()

+ getInstance() : Singleton

...

Multiton

- instances : Map

...

- Multiton()

+ getInstance(Object) : Multiton

...

Singleton vs Multiton

87

� Singleton

� one instance

private static final Santa INSTANCE = new Santa();

� zero-parameter accessor

public static Santa getInstance()

Singleton vs Multiton

88

� Multiton

� multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

� accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

Map

89

� a map stores key-value pairs

Map<String, PhoneNumber>

� values are put into the map using the key

key type value type

// client code somewhere

Map<String, PhoneNumber> m =

new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648"

m.put(key, ago);

[AJ 16.2]

90

� values can be retrieved from the map using only the key

� if the key is not in the map the value returned is null

// client code somewhere

Map<String, PhoneNumber> m =

new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648";

m.put(key, ago);

PhoneNumber gallery = m.get(key); // == ago

PhoneNumber art = m.get("4169796648"); // == ago

PhoneNumber pizza = m.get("4169671111"); // == null

91

� a map is not allowed to hold duplicate keys
� if you re-use a key to insert a new object, the existing object

corresponding to the key is removed and the new object inserted

// client code somewhere

Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);

String key = "4169796648";

m.put(key, ago); // add ago

System.out.println(m);

m.put(key, new PhoneNumber(905, 760, 1911)); // replaces ago

System.out.println(m);

{4169796648=(416) 979-6648}

{4169796648=(905) 760-1911}

prints

Mutable Keys

92

� from
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

� Note: great care must be exercised if mutable objects are
used as map keys. The behavior of a map is not specified if
the value of an object is changed in a manner that affects
equals comparisons while the object is a key in the map.

93

public class MutableKey

{

public static void main(String[] args)

{

Map<Date, String> m = new TreeMap<Date, String>();

Date d1 = new Date(100, 0, 1);

Date d2 = new Date(100, 0, 2);

Date d3 = new Date(100, 0, 3);

m.put(d1, "Jan 1, 2000");

m.put(d2, "Jan 2, 2000");

m.put(d3, "Jan 3, 2000");

d2.setYear(101); // mutator

System.out.println("d1 " + m.get(d1)); // d1 Jan 1, 2000

System.out.println("d2 " + m.get(d2)); // d2 Jan 2, 2000

System.out.println("d3 " + m.get(d3)); // d3 null

}

}
change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen

Making PhoneNumber a Multiton

94

1. multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber>();

2. accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

� getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

Making PhoneNumber a Multiton

95

3. require private constructors

� to prevent clients from creating instances on their own
� clients should use getInstance()

4. require immutability of PhoneNumbers

� to prevent clients from modifying state, thus making the
keys inconsistent with the PhoneNumbers stored in the map

� recall the recipe for immutability...

96

public class PhoneNumber implements Comparable<PhoneNumber>

{

private static final Map<String, PhoneNumber> instances =

new TreeMap<String, PhoneNumber>();

private final short areaCode;

private final short exchangeCode;

private final short stationCode;

private PhoneNumber(int areaCode,

int exchangeCode,

int stationCode)

{ // identical to previous versions }

97

public static PhoneNumber getInstance(int areaCode,

int exchangeCode,

int stationCode)

{

String key = "" + areaCode + exchangeCode + stationCode;

PhoneNumber n = PhoneNumber.instances.get(key);

if (n == null)

{

n = new PhoneNumber(areaCode, exchangeCode, stationCode);

PhoneNumber.instances.put(key, n);

}

return n;

}

// remainder of PhoneNumber class ...

why is validation not needed?

98

public class PhoneNumberClient {

public static void main(String[] args)

{

PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);

PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

System.out.println("x equals y: " + x.equals(y) +

" and x == y: " + (x == y));

System.out.println("x equals z: " + x.equals(z) +

" and x == z: " + (x == z));

}

}

x equals y: true and x == y: true

x equals z: false and x == z: false

Bonus Content

99

� notice that Singleton and Multiton use a static method
to return an instance of a class

� a static method that returns an instance of a class is
called a static factory method

� factory because, as far as the client is concerned, the
method creates an instance

� similar to a constructor

Static Factory Methods

100

� many examples

� java.lang.Integer

public static Integer valueOf(int i)

� Returns a Integer instance representing the specified int value.

� java.util.Arrays

public static int[] copyOf(int[] original, int newLength)

� Copies the specified array, truncating or padding with zeros (if
necessary) so the copy has the specified length.

Java API Static Factory Methods

101

� java.lang.String

public static String format(String format, Object... args)

� Returns a formatted string using the specified format string and
arguments.

� cse1030.math.Complex

public static Complex fromPolar(double mag, double angle)

� Returns a reference to a new complex number given its polar form.

102

� you can give meaningful names to static factory methods
(unlike constructors)

public class Person {

private String name;

private int age;

private int weight;

public Person(String name, int age, int weight) { // ... }

public Person(String name, int age) { // ... }

public Person(String name, int weight) { // ... }

// ...

}

illegal overload: same signature

103

public class Person { // modified from PEx's

// attributes ...

public Person(String name, int age, int weight) { // ... }

public static Person withAge(String name, int age) {

return new Person(name, age, DEFAULT_WEIGHT);

}

public static Person withWeight(String name, int weight) {

return new Person(name, DEFAULT_AGE, weight);

}

}

A Singleton Puzzle: What is Printed?

104

public class Elvis {

public static final Elvis INSTANCE = new Elvis();

private final int beltSize;

private static final int CURRENT_YEAR =

Calendar.getInstance().get(Calendar.YEAR);

private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

public int getBeltSize() { return this.beltSize; }

public static void main(String[] args) {

System.out.println("Elvis has a belt size of " +

INSTANCE.getBeltSize());

}

}

from Java Puzzlers by Joshua Bloch and Neal Gafter

