Mutable Classes (cont)



Constructors

public Vector2D (double x, double y, String name) {
this.x = x;
this.y = y;

this.name = name;

public Vector2D () {
this (0, 0, null); invokes

public Vector2D (double x, double y) {

this(x, y, null); invokes

public Vector2D (Vector2D other) {
this (other.x, other.y, other.name); invokes



Constructor Chaining

» when a constructor invokes another constructor it is
called constructor chaining

» to invoke a constructor in the same class you use the
this keyword

» if you do this then it must occur on the first line of the
constructor body



Accessor Methods

» recall that accessor methods return information about
the state of the object

» for Vector2D we need to return information about x, y,
and name

» we have 3 accessor methods

double getX()
Get the x coordinate of the vector.

double getY ()
Get the y coordinate of the vector.

String getName ()
Get the name of the vector.




Accessor Methods

public double getX() {

return this.x;

public double getY () {

return this.y;

public double getName () {

return this.name;



Mutator Methods

» recall that mutator methods allow a client to
manipulate the state of the object

» for Vector2D we need to allow the client to manipulate x,
y, and name



Mutator Methods

» we have 5 mutator methods

void setX (double x)
Set the x coordinate of the vector.

void setY (double y)
Set the y coordinate of the vector.

void setName (String name)
Set the name of the vector.

void set (double x, double y)
Set the x and y coordinate of the vector

void set (String name, double x, double y)
Set the name, x, and y coordinate of the vector




setX (), setY¥Y (), and set ()

public void setX(double x) ({

this.x = x;

public void setY (double y) {
this.y = y;

public void setName (String name) ({

this.name = name;

public void set (double x, double y) {
this.setX (x);
this.setY (y);

public void set (String name, double x, double y) {
this.setName (name) ;
this.set (x, y);



Equals

» recall that most value type classes will want their own
version of equals
» we shall say that two vectors are equal if their x, and y
coordinates are equal

» i.e., two vectors might be equal even if their names are different

boolean equals (Object obj)
Compares two vectors for equality.




equals ()

@Override public boolean equals (Object obj)
{

boolean eq = false;
if (obj == this) ({

eq = true;

return eq;

10



@Override public boolean equals (Object obj)
{

boolean eq = false;
if (obj == this) {
eq = true;
}
else if (obj != null && this.getClass () == obj.getClass()) {

}

return eq;

11



@Override public boolean equals (Object obj)
{

boolean eq = false;

if (obj == this) {
eq = true;

}

else if (obj != null && this.getClass () == obj.getClass()) {
Vector2d other = (Vector2d) obj;

}

return eq;

12



This version works most of the time (except when it doesn’t!)

@Override public boolean equals (Object obj)
{

boolean eq = false;

if (obj == this) {
eq = true;

}

else if (obj != null && this.getClass () == obj.getClass())
Vector2d other = (Vector2d) obj;

eq = this.getX() == other.getX() &&
this.getY () == other.getY¥();
}

return eq;

13

{



This version always works.

@Override public boolean equals (Object obj)
{
boolean eq = false;
if (obj == this) {
eq = true;

}

else if (obj != null && this.getClass () == obj.getClass()) {
Vector2d other = (Vector2d) obj;
eq = Double.compare (this.getX (), other.getX()) == 0 &&
Double.compare (this.getY (), other.getY¥Y()) == O;

}

return eq;

14



==vs Double.compare

» the issue here is quite subtle
» if you use == to compare the coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)
Vector2D v = new Vector2D (u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be false because NaN == NaN is always false
» NaN means “not a number” and is used to represent a
mathematically undefined number

» such as occurs when you divide zero by zero

» the behavior of NaN is defined in the IEEE 754 standard for
floating point arithmetic (i.e., this is not just a Java issue)

15



==vs Double.compare

» if you use == to compare the coordinates then all hash
based collections and all sets will behave strangely
with vectors having NaN as a component

Set<Vector2D> set = new HashSet<Vector2D>();
Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D (u); // (NaN, 1.0)
set .add (u);

set.add (v);

System.out .println(set.size()); // prints 2

» sets are supposed to reject duplicate elements but
there are 2 identical vectors in set

» occurs because Set uses equals to check for duplicates

16



==vs Double.compare

» if you use Double.compare to compare the
coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)
Vector2D v = new Vector2D (u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be true because Double.compare is
implemented to allow for equality of NaN

» checking for equality of NaN can be useful when trying
to track down errors in computations

» also the hash based collections and sets will work as
expected

17



==vs Double.compare

» there is a side effect of using Double.compare to
compare the coordinates

Vector2D u = new Vector2D (0.0, 1.0); // (0.0, 1.0)
Vector2D v = new Vector2D(-0.0, 1.0); // (-0.0, 1.0)

boolean eq = u.equals(v);

eqwill be false because Double.compare considers
0.0 and -o0.0 to be unequal

» canyou see how to implement equals to allow for equality
of NaN and equality of 0.0 and -0.0?

18



==vs Double.compare

» the real issue here is that floating point arithmetic is
tricky and affects every programming language

» a good starting point for learning more about some of
the issues involved

» http://floating-point-gui.de/

19



Observe That...

» instead of directly using the fields, we use accessor
methods where possible

» this reduces code duplication, especially if accessing an
field requires a lot of code

» this gives us the possibility to change the representation of
the fields in the future

» as long as we update the accessor methods (but we would have to
do that anyway to preserve the API)

» for example, instead of two attributes x and y, we might want to
use an array or some sort of Collection

» the notes [notes 2.3.1] call this delegating to accessors

20



Observe That...

» instead of directly modifying the attributes, we use
mutator methods where possible

» this reduces code duplication, especially if modifying an
attribute requires a lot of code

» this gives us the possibility to change the representation of
the attributes in the future

» as long as we update the mutator methods (but we would have to
do that anyway to preserve the API)

» for example, instead of two attributes x and y, we might
want to use an array or some sort of Collection

» the notes [notes 2.3.1] call this delegating to mutators

21



Things to Think About

» how do you implement Vector2D using an array to
store the coordinates?

» how do you implement Vector2D using a
Collection to store the coordinates?

» how do you implement VectorND, an N-dimensional
vector?

22



hashCode and compareTo



hashCode ()

4

if you override equals () you must override
hashCode ()

» otherwise, the hashed containers won't work properly
» recall that we did not override hashCode () for PhoneNumber

// client code somewhere
PhoneNumber pizza = new PhoneNumber (416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber> () ;

h.add(pizza);
System.out .println( h.contains (pizza) ); // true

PhoneNumber pizzapizza =
new PhoneNumber (416, 967, 1111);

System.out .println( h.contains (pizzapizza) ); // false

24 [notes 2.3.5]




Arrays as Containers

» suppose you have an array of unique PhoneNumbers

» how do you compute whether or not the array contains a
particular PhoneNumber?

public static boolean
hasPhoneNumber (PhoneNumber p,
PhoneNumber[] numbers)
{
if (numbers != null) {
for ( PhoneNumber num : numbers ) ({
if (num.equals(p)) {
return true;
}
}
}

return false;

25



called linear search or sequential search

doubling the length of the array doubles the amount of
searching we need to do

if there are n PhoneNumbers in the array:

best case

the first PhoneNumber is the one we are searching for
1 call to equals ()

worst case

the PhoneNumber is not in the array
n calls to equals ()

average case

the PhoneNumber is somewhere in the middle of the array
approximately (n/2) calls to equals ()

26



Hash Tables

» you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

27



Insertion into a Hash Table

» to insert an object a, the hash table calls
a.hashCode () method to compute which bucket to
put the object into b.hashCode () B 0

c.hashCode () N a.hashCode () B) 2
d.hashCode () N

0 1 2 3 N

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

28



Insertion into a Hash Table

» to insert an object a, the hash table calls
a.hashCode () method to compute which bucket to
put the object into

(O NP

29



Search on a Hash Table

» to see if a hash table contains an object a, the hash
table calls a.hashCode () method to compute which

bucket to look for a in

a.hashCode () 2
z .hashCode () » N »

b a.equals(a) z.equdls( c)
£ rue z.equdls(d)
false

30



Search on a Hash Table

» to see if a hash table contains an object a, the hash
table calls a.hashCode () method to compute which

bucket to look for a in

a.hashCode () 2
z .hashCode () » N »

b a.equals(a) z.equdls( c)
£ rue z.equdls(d)
false

31



searching a hash table is usually much faster than
linear search

doubling the number of elements in the hash table usually
does not noticably increase the amount of search needed

if there are n PhoneNumbers in the hash table:

best case

the bucket is empty, or the first PhoneNumber in the bucket is
the one we are searching for

o or1call to equals ()
worst case
all n of the PhoneNumbers are in the same bucket
n calls to equals ()
average case

the PhoneNumber is in a bucket with a small number of other
PhoneNumbers

a small number of calls to equals ()

32



Object hashCode ()

» if you don't override hashCode (), you get the
implementation from Object . hashCode ()

» Object.hashCode () uses the memory address of the object
to compute the hash code

33



// client code somewhere
PhoneNumber pizza = new PhoneNumber (416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber> () ;
h.add (pizza);

PhoneNumber pizzapizza = new PhoneNumber (416, 967, 1111);
System.out .println( h.contains (pizzapizza) ); // false

» note that pizza and pizzapizza are distinct objects

» therefore, their memory locations must be different

» therefore, their hash codes are different (probably)

» therefore, the hash table looks in the wrong bucket (probably)
and does not find the phone number even though

pizzapizza.equals (pizza)

34 * unless you're from Naples



A Bad (but legal) hashCode ()

public final class PhoneNumber {

// attributes, constructors, methods ...

@Override public int hashCode ()
{

return 1; // or any other constant int

}

» this will cause a hashed container to put all
PhoneNumbers in the same bucket

35



A Slightly Better hashCode ()

public final class PhoneNumber {

// attributes, constructors, methods

@Override public int hashCode ()
{
return (int) (this.getAreaCode() +
this.getExchangeCode () +
this.getStationCode());



» the basic idea is generate a hash code using the
attributes of the object

» it would be nice if two distinct objects had two distinct

hash codes

» but this is not required; two different objects can have the
same hash code

» it is required that:
. if x. equals (y) then x.hashCode () == y.hashCode()

2. x.hashCode () always returns the same value if x does not
change its state

37



Something to Think About

» what do you need to be careful of when putting a
mutable object into a HashSet?

» canyou avoid the problem by using immutable objects?



39

comparelo



Comparable Objects

» many value types have a natural ordering

» that is, for two objects x and y, x is less than y is
meaningful
» Short, Integer, Float, Double, etc
» Strings can be compared in dictionary order
» Dates can be compared in chronological order
» you might compare Vector2Ds by their length
» Dies can be compared by their face value

» if your class has a natural ordering, consider
implementing the Comparable interface

» doing so allows clients to sort arrays or Collections of your
object

40



Interfaces

» an interface is (usually) a group of related methods
with empty bodies
» the Comparable interface has just one method

public interface Comparable<T>

{

int compareTo (T t);

}
» a class that implements an interfaces promises to

provide an implementation for every method in the
interface

41



compareTo ()

» Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

» Throws a ClassCastException if the specified object
type cannot be compared to this object.

42



Die compareTo ()

public class Die implements Comparable<Die> ({

// attributes, constructors, methods

public int compareTo (Die other) {
int result = 0;
if (this.getValue() < other.getValue()) {
result = -1;
}
else if (this.getValue() > other.getValue()) {

result = 1;

}

return result;

143



Die compareTo ()

» the following also works for the Die class, but is
dangerous in general:

public int compareTo (Die other) ({
int result = this.getValue() - other.getValue();

return result;

44



Comparable Contract

1. the sign of the returned int must flip if the order of
the two compared objects flip
» if x.compareTo(y) > 0theny.compareTo(x) < 0

» if x.compareTo(y) < 0theny.compareTo(x) > 0

» if x.compareTo(y) == 0 theny.compareTo (x) ==

45



Comparable Contract

>. compareTo () must be transitive

4 ifx.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

» ifx.compareTo(y) < 0 && y.compareTo(z) < O then
x.compareTo(z) < O

» ifx.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo (z) ==



Comparable Contract

3. if x.compareTo (y) == 0 then the signs of
x .compareTo (z) and y.compareTo (z) must be
the same

47



Consistency with equals

» an implementation of compareTo () is said to be
consistent with equals () when

if x.compareTo(y) == 0 then
x.equals (y) == true
» and
if x.equals(y) == true then

x.compareTo (y) ==



Not in the Comparable Contract

» it is not required that compareTo () be consistent with

equals ()
» thatis
if x.compareTo (y)
x.equals(y) ==
» similarly
if x.equals(y) ==

x .compareTo (y)

== 0 then
false is acceptable

true then
1= 0 is acceptable

» try to come up with examples for both cases above

49



Implementing compareTo

» implementing compareTo is similar to implementing
equals

» you need to compare all of the fields

» starting with the field that is most significant for ordering
purposes and working your way down

50



PhoneNumber compareTo ()

public class PhoneNumber implements Comparable<PhoneNumber> {

// attributes, constructors, methods

public int compareTo (PhoneNumber other) ({
int result = 0;
result = this.getAreaCode() - other.getAreaCode();
if (result == 0) {

result = this.getExchangeCode () - other.getExchangeCode();
}
if (result == 0) {

result = this.getStationCode () - other.getStationCode();
}

return result;

51



Implementing compareTo

» if you are comparing fields of type £1loat or double
you should use Float . compare or
Double. compare instead of <, >, or ==

» if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically

» TreeSet, TreeMap

» many methods in the utility classes Collections and
Arrays

52



53

Mixing Static and Non-Static



static Fields

» afield that is static is a per-class member

» only one copy of the field, and the field is associated with
the class

» every object created from a class declaring a static field shares the
same copy of the field

» static fields are used when you really want only one
common instance of the field for the class

» less common than non-static fields

54



Example

» a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Sun's Java Tutorial
public class Bicycle {

// some other fields here...

private static int numberOfBicycles = 0;

public Bicycle() {
// set some attributes here...
Bicycle.numberOfBicycles++; note:

} not this.numberOfBicycles++

public static int getNumberOfBicyclesCreated() {
return Bicycle.numberOfBicycles;

}
}

55 [notes 3.2]



» another common example is to count the number of
times a method has been called

public class X {

private static int numTimesXCalled
private static int numTimesYCalled

public void xMethod () {
// do something... and then update counter
++X . numTimesXCalled;

}

public void yMethod () ({
// do something... and then update counter
++X . numTimesYCalled;

}
}

56



Mixing Static and Non-static Fields

» a class can declare static (per class) and non-static (per
instance) fields

» a common textbook example is giving each instance a
unique serial number
» the serial number belongs to the instance

» therefore it must be a non-static field

public class Bicycle {
// some attributes here...
private static int numberOfBicycles = 0;

private int serialNumber;

// ...

57



» how do you assign each instance a unique serial
number?
» the instance cannot give itself a unique serial number

because it would need to know all the currently used serial
numbers

» could require that the client provide a serial number
using the constructor

» instance has no guarantee that the client has provided a
valid (unique) serial number



the class can provide unique serial numbers using

static fields

» e.g. using the number of instances created as a serial
number

public class Bicycle {
// some attributes here...

private static int numberOfBicycles = 0;
private int serialNumber;

public Bicycle() {
// set some attributes here...
this.serialNumber = Bicycle.numberOfBicycles;
Bicycle.numberOfBicycles++;

}
}

59



» a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

// some attributes here...
private static int numberOfBicycles = 0;

private static final
SerialGenerator serialSource = new SerialGenerator();

private int serialNumber;

public Bicycle() {
// set some attributes here...
this.serialNumber = Bicycle.serialSource.getNext ();

Bicycle.numberOfBicycles++;
}

60



Static Methods

» recall that a static method is a per-class method
» client does not need an object to invoke the method
» client uses the class name to access the method

» a static method can only use static fields of the
class

» static methods have no this parameter because a static
method can be invoked without an object

» without a this parameter, there is no way to access non-
static fields

» non-static methods can use all of the fields of a class
(including static ones)

61



public class Bicycle {

// some attributes, constructors, methods here...

public static int getNumberCreated()
{

return Bicycle.numberOfBicycles;

public int getSerialNumber ()
{

return this.serialNumber;

public void setNewSerialNumber ()
{

static method
can only use
static attributes

non-static method
can use
non-static attributes

and static attributes

this.serialNumber = Bicycle.serialSource.getNext () ;

62




Mixing Static and Non-static

Singleton



Singleton Pattern

» “There can be only one.”
- » Connor MacLeod, Highlander

( HISTORF K7 SEAN CONINERY

II/G'II

THERE CAN BF ONI!Y ONF DIRECTER SF




Singleton Pattern

» asingleton is a class that is instantiated exactly once

» singleton is a well-known design pattern that can be
used when you need to:

1. ensure that there is one, and only one*, instance of a class,
and

>. provide a global point of access to the instance

» any client that imports the package containing the singleton
class can access the instance

[notes 3.4] *or possibly zero

65



One and Only One

» how do you enforce this?

» need to prevent clients from creating instances of the
singleton class

» private constructors

» the singleton class should create the one instance of itself

» note that the singleton class is allowed to call its own private
constructors

» need a static attribute to hold the instance

66



A Silly Example: Version 1

package xmas; uses a public field that
all clients can access

public class Santa

{
// whatever fields you want for santa...

public static final Santa INSTANCE = new Santa();

private Santa/()

{ // initialize attributes here... }



import =xmas;

// client code in a method somewhere
public void gimme ()

{
Santa.INSTANCE.givePresent () ;

68




A Silly Example: Version 2

package xmas; uses a private field; how
do clients access the field?

public class Santa

{
// whatever fields you want for santa...

private static final Santa INSTANCE = new Santa();

private Santa/()

{ // initialize attributes here... }



Global Access

» how do clients access the singleton instance?
» by using a static method

» note that clients only need to import the package
containing the singleton class to get access to the
singleton instance

» any client method can use the singleton instance without
mentioning the singleton in the parameter list

70



A Silly Example (cont)

package xmas;

public class Santa {

private int numPresents;
private static final Santa INSTANCE = new Santa();

private Santa()
{ // initialize fields here... }

public static Santa getInstance()
{ return Santa.INSTANCE; }

public Present givePresent () ({
Present p = new Present();
this.numPresents-—-—;
return p;

71

uses a private field; how
do clients access the field?

clients use a public
static factory method




import =xmas;

// client code in a method somewhere
public void gimme ()

{

Santa.getInstance () .givePresent () ;

72




Enumerations

» an enumeration is a special data type that enables for a
variable to be a set of predefined constants

» the variable must be equal to one of the values that
have been predefined for it

» e.g., compass directions
» NORTH, SOUTH, EAST, and WEST

» days of the week
» MONDAY, TUESDAY, WEDNESDAY, etc.
» playing card suits
» CLUBS, DIAMONDS, HEARTS, SPADES
» useful when you have a fixed set of constants

73



A Silly Example: Version 3

package xmas; singleton as an
enumeration

public enum Santa

{

// whatever fields you want for santa...

will call the private

INSTANCE; default constructor

private Santa()

{ // initialize attributes here... }

74



same usage as public
field (Version 1)

import =xmas;

// client code in a method somewhere
public void gimme ()
{

Santa.INSTANCE.givePresent () ;

75




Singleton as an enumeration

» considered the preferred approach for implementing a
singleton

» for reasons beyond the scope of CSE1030

» all enumerations are subclasses of java.lang.Enum



Applications

» singletons should be uncommon
» typically used to represent a system component that is
intrinsically unique
» window manager
» file system
» logging system

77



Logging

» when developing a software program it is often useful
to log information about the runtime state of your
program
» similar to flight data recorder in an airplane
» a good log can help you find out what went wrong in your

program

» problem: your program may have many classes, each of
which needs to know where the single logging object is
» global point of access to a single object == singleton

» Java logging API is more sophisticated than this
» but it still uses a singleton to manage logging
» java.util.logging



Lazy Instantiation

» notice that the previous singleton implementation
always creates the singleton instance whenever the
class is loaded

» if no client uses the instance then it was created needlessly

» it is possible to delay creation of the singleton instance
until it is needed by using lazy instantiation

» only works for version 2

79



Lazy Instantiation as per Notes

public class Santa {
private static Santa INSTANCE = null;

private Santa()

{ // ...}

public static Santa getInstance()

{
if (Santa.INSTANCE == null) {

Santa.INSTANCE = new Santa();

}
return Santa.INSTANCE;

8o



Mixing Static and Non-static

Multiton



Goals for Today

» Multiton
» review maps
» static factory methods

82



Singleton UML Class Diagram

Singleton

— INSTANCE : Singleton

— Singleton()
+ getInstance() : Singleton




One Instance per State

» the Java language specification guarantees that
identical string literals are not duplicated

// client code somewhere

String sl
String s2

- "XYZ" :

- "XYZ" :

// how many String instances are there?
System.out .println("same object? " + (sl == s2) );

) prints: same object? true
» the compiler ensures that identical String literals all
refer to the same object

» asingle instance per unique state [notes 3.5]

84



Multiton

» a singleton class manages a single instance of the class

» a multiton class manages multiple instances of the
class

» what do you need to manage multiple instances?
» a collection of some sort

» how does the client request an instance with a
particular state?
» it needs to pass the desired state as arguments to a method



Singleton vs Multiton UML Diagram

Singleton
— INSTANCE : Singleton

— Singleton()
+ getInstance() : Singleton

Multiton

— instances : Map

— Multiton ()
+ getInstance (Object) : Multiton

86



Singleton vs Multiton

» Singleton

» one instance

private static final Santa INSTANCE = new Santa();

4 zero—pararneteraccessor

public static Santa getInstance()



Singleton vs Multiton

» Multiton
» multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber> () ;

» accessor needs to provide state information

public static PhoneNumber getInstance (int areaCode,
int exchangeCode,

int stationCode)

38



Map

» a map stores key-value pairs

Map<String, PhoneNumber>
key type value type

» values are put into the map using the key

// client code somewhere
Map<String, PhoneNumber> m =

PhoneNumber ago = new PhoneNumber (416, 979,
String key = "4169796648"

m.put (key, ago);

new TreeMap<String, PhoneNumber>;

6648) ;

[A] 16.2]



values can be retrieved from the map using only the key

» if the key is not in the map the value returned is nul1

// client code somewhere
Map<String, PhoneNumber> m =

PhoneNumber ago = new PhoneNumber (416, 979, 6648);
String key = "4169796648";
m.put (key, ago);

PhoneNumber gallery = m.get (key); // ==
PhoneNumber art = m.get ("4169796648") ; // ==

PhoneNumber pizza = m.get ("4169671111"); // ==

new TreeMap<String, PhoneNumber>;

ago
ago

null

90




» a map is not allowed to hold duplicate keys

» if you re-use a key to insert a new object, the existing object
corresponding to the key is removed and the new object inserted

// client code somewhere
Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber (416, 979, 6648);
String key = "4169796648";

m.put (key, ago); // add ago
System.out .println (m);

m.put (key, new PhoneNumber (905, 760, 1911)); // replaces ago
System.out .println (m);

prints

{4169796648=(416) 979-6648}
{4169796648=(905) 760-1911}

o1



Mutable Keys

» from
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

» Note: great care must be exercised if mutable objects are
used as map keys. The behavior of a map is not specified if
the value of an object is changed in a manner that affects
equals comparisons while the object is a key in the map.

92



public class MutableKey
{

public static void main (String[] args)

{
Map<Date, String> m = new TreeMap<Date, String>();
Date dl = new Date (100, O, 1);
Date d2 = new Date (100, 0, 2);
Date d3 = new Date (100, 0, 3);
m.put (d1, "Jan 1, 2000");
m.put (d2, "Jan 2, 2000");
m.put (d3, "Jan 3, 2000"); don't mutate keys;
d2.setYear (101); // mutator | bad thingswill happen
System.out .println("dl " + m.get(dl)); // d1 Jan 1, 2000
System.out .println("d2 " + m.get(d2)); // d2 Jan 2, 2000
System.out .println("d3 " + m.get(d3)); // d3 null

change TreeMap to HashMap and see what happens

93



Making PhoneNumber a Multiton

1. multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

instances = new TreeMap<String, PhoneNumber> () ;

>. accessor needs to provide state information

public static PhoneNumber getInstance (int areaCode,

int exchangeCode,
int stationCode)
» getInstance () will getan instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

94



Making PhoneNumber a Multiton

3. require private constructors

» to prevent clients from creating instances on their own
» clients should use getInstance ()

+

require immutability of PhoneNumbers

» to prevent clients from modifying state, thus making the
keys inconsistent with the PhoneNumbers stored in the map

» recall the recipe for immutability...

95



public class PhoneNumber implements Comparable<PhoneNumber>

{

private

private
private

private

private

static final Map<String, PhoneNumber> instances =

new TreeMap<String, PhoneNumber>();

final short areaCode;
final short exchangeCode;

final short stationCode;

PhoneNumber (1nt areaCode,
int exchangeCode,

int stationCode)

{ // identical to previous versions }



public static PhoneNumber getInstance (int areaCode,

int exchangeCode,
why is validation not needed?

int stationCode)

{

String key = "" + areaCode + exchangeCode + stationCode;
PhoneNumber n = PhoneNumber.instances.get (key);
if (n == null)
{
n = new PhoneNumber (areaCode, exchangeCode, stationCode);

PhoneNumber.instances.put (key, n);

}

return n;

}

// remainder of PhoneNumber class

97



public class PhoneNumberClient {

public static void main (String[] args)

{
PhoneNumber x

PhoneNumber y

PhoneNumber .getInstance (416, 736,
PhoneNumber .getInstance (416, 736,

PhoneNumber z = PhoneNumber.getInstance (905, 867,

System.out .println("x equals y:

" and x == y:

System.out .println("x equals z:

" and x == z:
}
}
X equals y: true and x == y: true
X equals z: false and x == z: false

98

+ x.equals(y) +

+ (x

+ x.equals(z) +

+ (x

y));

z));

2100) ;
2100) ;
5309) ;



Bonus Content

» notice that Singleton and Multiton use a static method
to return an instance of a class

» a static method that returns an instance of a class is
called a static factory method

» factory because, as far as the client is concerned, the
method creates an instance

» similar to a constructor

99



Static Factory Methods

» many examples

» java.lang.Integer
public static Integer valueOf (int 1)

» Returns a Integer instance representing the specified int value.

» java.util.Arrays
public static int[] copyOf (int[] original, int newLength)

» Copies the specified array, truncating or padding with zeros (if
necessary) so the copy has the specified length.

100



Java API Static Factory Methods

» java.lang.String

public static String format (String format, Object... args)

» Returns a formatted string using the specified format string and
arguments.

» ¢sel030.math.Complex

public static Complex fromPolar (double mag, double angle)

» Returns a reference to a new complex number given its polar form.

101



» you can give meaningful names to static factory methods
(unlike constructors)

public class Person ({
private String name;
private int age;

private int weight;

public Person(String name, int age, int weight) { // ... }
public Person(String name, int age) { // ... }
public Person(String name, int weight) { // ... }

/] ... illegal overload: same signature

102



public class Person { // modified from PEX's

// attributes

public Person(String name, int age, int weight) { // ... }

public static Person withAge (String name, int age) {

return new Person(name, age, DEFAULT WEIGHT),

public static Person withWeight (String name, int weight) {
return new Person(name, DEFAULT_ AGE, weight);

103



A Singleton Puzzle: What is Printed?

public class Elvis ({
public static final Elvis INSTANCE = new Elvis();
private final int beltSize;
private static final int CURRENT_ YEAR =
Calendar.getInstance () .get (Calendar.YEAR);

private Elvis () { this.beltSize CURRENT_ YEAR - 1930; }

public int getBeltSize () { return this.beltSize; }

public static void main (String[] args) {
System.out .println("Elvis has a belt size of " +
INSTANCE.getBeltSize());

from Java Puzzlers by Joshua Bloch and Neal Gafter

104



