
Classes (Part 1)

Implementing non-static features

1

Goals

� implement a small immutable class with non-static
attributes and methods

� recipe for immutability
� this

� toString method

� equals method

2

Value Type Classes

3

� a value type is a class that represents a value

� examples of values: name, date, colour, mathematical
vector

� Java examples: String, Date, Integer

� the objects created from a value type class can be:

� mutable: the state of the object can change
� Date

� immutable: the state of the object is constant once it is
created
� String, Integer (and all of the other primitive wrapper

classes)

Immutable Classes

4

� a class defines an immutable type if an instance of the
class cannot be modified after it is created

� each instance has its own constant state

� more precisely, the externally visible state of each object appears
to be constant

� Java examples: String, Integer (and all of the other
primitive wrapper classes)

� advantages of immutability versus mutability

� easier to design, implement, and use

� can never be put into an inconsistent state after creation

North American Phone Numbers

� North American Numbering Plan is the standard used
in Canada and the USA for telephone numbers

� telephone numbers look like

416-736-2100

5

area
code

exchange
code

station
code

Designing a Simple Immutable Class

6

� PhoneNumber API

PhoneNumber

- areaCode : short

- exchangeCode : short

- stationCode : short

+ PhoneNumber(int, int, int)

+ equals(Object) : boolean

+ getAreaCode() : short

+ getExchangeCode() : short

+ getStationCode() : short

+ toString() : String

none of these
features are static

7

package cse1030;

public class PhoneNumber {

}

Recipe for Immutability

� the recipe for immutability in Java is described by
Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

8 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

Recipe for Immutability 1

9

1. Do not provide any methods that can alter the state
of the object

� methods that modify state are called mutators

� Java example of a mutator:

import java.util.Calendar;

public class CalendarClient {

public static void main(String[] args)

{

Calendar now = Calendar.getInstance();

// set hour to 5am

now.set(Calendar.HOUR_OF_DAY, 5);

}

}

Recipe for Immutability 2

10

2. Prevent the class from being extended

� one way to do this is to mark the class as final

� a final class cannot be extended using inheritance

� don't confuse final variable and final classes

� the reason for this step will become clear in a couple
of weeks

11

package cse1030;

public final class PhoneNumber {

}

Recipe for Immutability 3

12

3. Make all fields final

� recall that final means that the field can only be
assigned to once

� final fields make your intent clear that the class is
immutable

13

package cse1030;

public final class PhoneNumber {

final int areaCode;

final int exchangeCode;

final int stationCode;

}

Recipe for Immutability 4

14

4. Make all fields private

� this applies to all public classes (including mutable
classes)

� in public classes, strongly prefer private fields

� and avoid using public fields

� private fields support encapsulation

� because they are not part of the API, you can change them (even
remove them) without affecting any clients

� the class controls what happens to private fields

� it can prevent the fields from being modified to an inconsistent state

15

package cse1030;

public final class PhoneNumber {

private final int areaCode;

private final int exchangeCode;

private final int stationCode;

}

Recipe for Immutability 5

16

5. Prevent clients from obtaining a reference to any
mutable fields

� recall that final fields have constant state only if the
type of the attribute is a primitive or is immutable

� if you allow a client to get a reference to a mutable field,
the client can change the state of the field, and hence, the
state of your immutable class

� revisit this point when we talk about composition

� also, none of our fields are reference types so we don't have to
worry about this point

this

17

� every non-static method of a class has an implicit
parameter called this

� recall that a non-static method requires an object to call
the method

� inside getAreaCode, this is a reference to object used to
invoke the method

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);

int areaCode = num.getAreaCode(); // get the

// area code that

// belongs to num

getAreaCode

18

� how does the method getAreaCode() get the area
code for the correct instance?

� this is a reference to the calling object

return the area code belonging
to the PhoneNumber object that
was used to invoke the method

/**

* Get the area code of this phone number.

*

* @return the area code of this phone number
*/

public int getAreaCode() {
return this.areaCode;

}

getExchangeCode and getStationCode

19

� getExchangeCode() and getStationCode() are
very similar

return the exchange code belonging
to the PhoneNumber object that
was used to invoke the method

/**

* Get the exchange code of this phone number.

*

* @return the exchange code of this phone number
*/

public int getExchangeCode() {
return this.exchangeCode;

}

getExchangeCode and getStationCode

20

� getExchangeCode() and getStationCode() are
very similar

return the station code belonging
to the PhoneNumber object that
was used to invoke the method

/**

* Get the station code of this phone number.

*

* @return the station code of this phone number
*/

public int getStationCode() {
return this.stationCode;

}

toString()

21

� recall that every class extends java.lang.Object

� Object defines a method toString() that returns a
String representation of the calling object

� we can call toString() with our current PhoneNumber class

� this prints something like
phonenumber.PhoneNumber@19821f

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);

System.out.println(num.toString());

toString()

22

� toString() should return a concise but informative
representation that is easy for a person to read

� it is recommended that all subclasses override this
method

� this means that any non-utility class you write should
redefine the toString() method

� in this case, our new toString() method has the same
declaration as toString() in java.lang.Object

toString()

23

� it is "easy" to override toString() for our class
/**
* Returns a string representation of this phone number. The string starts
* with the area code inside of parenthesis, followed by a space, followed by
* the exchange code, followed by a hyphen, followed by the station code. The
* area code and exchange code always have three digits (zero-padded), and the
* station code always has four digits (zero-padded). For example, the string
* representation of the phone number 416-736-2100 is:
*
* <p>
* <code>(416) 736-2100</code>
*
* @return a string representation of this phone number
* @see java.lang.Object#toString()
*/

@Override
public String toString() {
return String.format("(%1$03d) %2$03d-%3$04d",

this.areaCode,
this.exchangeCode,
this.stationCode);

}

Constructors

24

Constructors

25

� constructors are responsible for initializing instances
of a class

� usually, a constructor will set the fields of the object to:

� some reasonable default values, or

� some client specified values,

� or some combination of the two

[notes 2.2.3]

Constructors

26

� a constructor declaration looks a little bit like a
method declaration:

� the name of a constructor is the same as the class name

� a constructor may have an access modifier (but no other
modifiers)

27

public PhoneNumber() {

}

public PhoneNumber(int areaCode,

int exchangeCode,

int stationCode) {

}

the default constructor
(has no parameters)

a constructor with
three parameters

Constructors

28

� every constructor has an implicit this parameter

� the this parameter is a reference to the object that is
currently being constructed

29

public PhoneNumber() {

this.areaCode = 800;

this.exchangeCode = 555;

this.stationCode = 1111;

}

public PhoneNumber(int areaCode,

int exchangeCode, int stationCode) {

this.areaCode = areaCode;

this.exchangeCode = exchangeCode;

this.stationCode = stationCode;

}

Bell Canada operator
phone number?

client specified
phone number

Constructors

30

� a constructor will often need to validate its arguments

� because you generally should avoid creating objects with
invalid state

� what are valid area codes, exchange codes, and station
codes?

� we will assume:

� must not be negative

� area code and exchange codes < 1,000

� station code < 10,000

� reality is more complicated...

31

public PhoneNumber(int areaCode,

int exchangeCode, int stationCode) {

if (areaCode < 0 || areaCode > 999) {

throw new IllegalArgumentException("bad area code");

}

if (exchangeCode < 0 || exchangeCode > 999) {

throw new IllegalArgumentException("bad exchange code");

}

if (stationCode < 0 || stationCode > 9999) {

throw new IllegalArgumentException("bad station code");

}

this.areaCode = areaCode;

this.exchangeCode = exchangeCode;

this.stationCode = stationCode;

}

Comment on Immutability

� notice that our constructors make it impossible for a
client to create an invalid phone number

� also recall that our class is immutable

� i.e., the client cannot change a phone number once it is
created

� the above two features guarantee that all
PhoneNumber objects will be valid phone numbers

32

Classes (Part 2)

Implementing non-static features

33

Goals

� finish implementing the immutable class
PhoneNumber

� equals()

� implement a mutable class

34

Overriding equals()

35

� suppose you write a value class that extends Object
but you do not override equals()

� what happens when a client tries to use equals()?

� Object.equals() is called

// PhoneNumber client

PhoneNumber cse = new PhoneNumber(416, 736, 5053);

System.out.println(cse.equals(cse)); // true

PhoneNumber cseToo = cse;

System.out.println(cseToo.equals(cse)); // true

PhoneNumber cseAlso = new PhoneNumber(416, 736, 5053);

System.out.println(cseAlso.equals(cse)); // false!

[notes 2.2.4]

36

64 client

cse

cseToo

cseAlso

600 PhoneNumber

object

areaCode 416

exchangeCode 736

stationCode 5053

700 PhoneNumber

object

areaCode 416

exchangeCode 736

stationCode 5053

600

600

700

Object.equals()

37

� Object.equals() checks if two references refer to
the same object

� x.equals(y) is true if and only if x and y are references to
the same object

PhoneNumber.equals()

38

� most value classes should support logical equality

� an instance is equal to another instance if their states are
equal
� e.g. two PhoneNumbers are equal if their area, exchange, and

station codes have the same values

39

� implementing equals() is surprisingly hard
� "One would expect that overriding equals(), since it is a

fairly common task, should be a piece of cake. The reality is far
from that. There is an amazing amount of disagreement in the
Java community regarding correct implementation of
equals(). Look into the best Java source code or open an
arbitrary Java textbook and take a look at what you find.
Chances are good that you will find several different
approaches and a variety of recommendations."

� Angelika Langer, Secrets of equals() – Part 1
� http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

40

� what we are about to do does not always produce the
result you might be looking for

� but it is always satisfies the equals() contract

� and it's what the notes and textbook do

CSE1030 Requirements for equals

1. an instance is equal to itself

2. an instance is never equal to null

3. only instances of the exact same type can be equal

4. instances with the same state are equal

41

1. An Instance is Equal to Itself

42

� x.equals(x) should always be true

� also, x.equals(y) should always be true if x and y
are references to the same object

� you can check if two references are equal using ==

43

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

}

2. An Instance is Never Equal to null

44

� Java requires that x.equals(null) returns false

� and you must not throw an exception if the argument
is null

� so it looks like we have to check for a null argument...

45

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

}

3. Instances of the Same Type can be Equal

46

� the implementation of equals() used in the notes
and the textbook is based on the rule that an instance
can only be equal to another instance of the same type

� you can find the class of an object using
Object.getClass()

public final Class<? extends Object> getClass()

� Returns the runtime class of an object.

47

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

}

Instances with Same State are Equal

48

� recall that the value of the attributes of an object
define the state of the object

� two instances are equal if all of their attributes are equal

� unfortunately, we cannot yet retrieve the attributes of
the parameter obj because it is declared to be an
Object in the method signature

� we need a cast

49

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

PhoneNumber other = (PhoneNumber) obj;

}

Instances with Same State are Equal

50

� there is a recipe for checking equality of fields

1. if the field is a primitive type other than float or
double use ==

2. if the attribute type is float use Float.compare()

3. if the attribute type is double use Double.compare()

4. if the attribute is an array consider Arrays.equals()

5. if the attribute is a reference type use equals(), but
beware of attributes that might be null

51

@Override

public boolean equals(Object obj) {

if (this == obj) {

return true;

}

if (obj == null) {

return false;

}

if (this.getClass() != obj.getClass()) {

return false;

}

PhoneNumber other = (PhoneNumber) obj;

if (areaCode != other.areaCode) {

return false;

}

if (exchangeCode != other.exchangeCode) {

return false;

}

if (stationCode != other.stationCode) {

return false;

}

return true;

}

The equals() Contract

52

� for reference values equals() is

1. reflexive

2. symmetric

3. transitive

4. consistent

5. must not throw an exception when passed null

The equals() contract: Reflexivity

53

1. reflexive :

� an object is equal to itself

� x.equals(x) is true

The equals() contract: Symmetry

54

2. symmetric :

� two objects must agree on whether they are equal

� x.equals(y) is true if and only if y.equals(x) is
true

The equals() contract: Transitivity

55

3. transitive :

� if a first object is equal to a second, and the second object
is equal to a third, then the first object must be equal to
the third

� if x.equals(y) is true, and y.equals(z) is true,
then x.equals(z) must be true

The equals() contract: Consistency

56

4. consistent :

� repeatedly comparing two objects yields the same result
(assuming the state of the objects does not change)

The equals() contract: Non-nullity

57

5. x.equals(null) is always false and never does
not throw an exception

The equals() contract and getClass()

� using getClass() makes it relatively easy to ensure
that the equals() contract is obeyed

� e.g., symmetry and transitivity are easy to ensure

� however, using getClass() means that your
equals() method won't work as expected in
inheritance hierarchies

� more on this when we talk about inheritance

58

One more thing regarding equals()

� if you override equals() you must override
hashCode()

� otherwise, the hashed containers won't work properly

� we will see how to implement hashCode()in the

next lecture or so

� also a discussion about how the hashed containers actually
work

59

Mutable Classes

60

Mutable Classes

61

� a mutable class can change how its state appears to
clients

� recall that immutable classes are generally easier to
implement and use

� so why would we want a mutable class?

� because you need a separate immutable object for every value you
need to represent

� example is String concatenation

Reading a Text File into a String

62

BufferedReader in =

new BufferedReader(new FileReader(file));

String contents = "";

while (in.ready()) {

contents = contents + in.readLine();

}

creates a new String object

to perform the concatenation

each iteration of the loop

Reading a Text File into a StringBuilder

63

BufferedReader in =

new BufferedReader(new FileReader(file));

StringBuilder contents = new StringBuilder();

while (in.ready()) {

contents.append(in.readLine());

}

new String not created

for each iteration

Example Mutable class

� we will create a class to represent 2-dimensional
vectors

64

What Can Mathematical Vectors Do?

65

� add

� subtract

� multiply by scalar

� set coordinates

� get coordinates

� construct

� equals

� toString

Vector2D

- x: double

- y: double

- name: String

+ Vector2D()

+ Vector2D(double, double)

+ Vector2D(String, double, double)

+ Vector2D(Vector2D)

+ add(Vector2D): void

+ equals(Object): boolean

+ getX(): double

+ getY(): double

+ length(): double

+ multiply(double): void

...

Constructors

� recall that the role of the constructor is to initialize the
attributes of a new object
� for Vector2Dwe need to initialize x, y, and name

� we have 4 overloaded constructors

66

Vector2D()

Create the vector (0, 0) with no name.

Vector2D(double x, double y)

Create the vector (x, y) with no name.

Vector2D(String name, double x, double y)

Create the vector (x, y) with the given name.

Vector2D(Vector2D other)

Create a new vector that is equal to the given vector.

Constructors

67

public Vector2D() {

this.x = 0;

this.y = 0;

this.name = null;

}

public Vector2D(double x, double y) {

this.x = x;

this.y = y;

this.name = null;

}

Constructors

68

public Vector2D(String name, double x, double y) {

this.x = x;

this.y = y;

this.name = name;

}

public Vector2D(Vector2D other) {

this.x = other.x;

this.y = other.y;

this.name = other.name;

}

Avoiding Code Duplication

� notice that the constructor bodies are almost identical
to each other

� whenever you see duplicated code you should consider
moving the duplicated code into a method

� in this case, one of the constructors already does
everything we need to implement the other
constructors…

69

Constructors

70

public Vector2D(double x, double y, String name) {

this.x = x;

this.y = y;

this.name = name;

}

public Vector2D() {

this(0, 0, null);

}

public Vector2D(double x, double y) {

this(x, y, null);

}

public Vector2D(Vector2D other) {

this(other.x, other.y, other.name);

}

invokes

invokes

invokes

Constructor Chaining

� when a constructor invokes another constructor it is
called constructor chaining

� to invoke a constructor in the same class you use the
this keyword

� if you do this then it must occur on the first line of the
constructor body

71

Accessor Methods

� recall that accessor methods return information about
the state of the object
� for Vector2Dwe need to return information about x, y,

and name

� we have 3 accessor methods

72

double getX()

Get the x coordinate of the vector.

double getY()

Get the y coordinate of the vector.

String getName()

Get the name of the vector.

Accessor Methods

73

public double getX() {

return this.x;

}

public double getY() {

return this.y;

}

public double getName() {

return this.name;

}

Mutator Methods

� recall that mutator methods allow a client to
manipulate the state of the object
� for Vector2Dwe need to allow the client to manipulate x,
y, and name

74

Mutator Methods

� we have 5 mutator methods

75

void setX(double x)

Set the x coordinate of the vector.

void setY(double y)

Set the y coordinate of the vector.

void setName(String name)

Set the name of the vector.

void set(double x, double y)

Set the x and y coordinate of the vector

void set(String name, double x, double y)

Set the name, x, and y coordinate of the vector

setX(), setY(), and set()

76

public void setX(double x) {

this.x = x;

}

public void setY(double y) {

this.y = y;

}

public void setName(String name) {

this.name = name;

}

public void set(double x, double y) {

this.setX(x);

this.setY(y);

}

public void set(String name, double x, double y) {

this.setName(name);

this.set(x, y);

}

Equals

� recall that most value type classes will want their own
version of equals

� we shall say that two vectors are equal if their x, and y
coordinates are equal

� i.e., two vectors might be equal even if their names are different

77

boolean equals(Object obj)

Compares two vectors for equality.

equals()

78

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

return eq;

}

79

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

}

return eq;

}

80

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

Vector2d other = (Vector2d) obj;

}

return eq;

}

81

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

Vector2d other = (Vector2d) obj;

eq = this.getX() == other.getX() &&

this.getY() == other.getY();

}

return eq;

}

This version works most of the time (except when it doesn’t!)

82

@Override public boolean equals(Object obj)

{

boolean eq = false;

if (obj == this) {

eq = true;

}

else if (obj != null && this.getClass() == obj.getClass()) {

Vector2d other = (Vector2d) obj;

eq = Double.compare(this.getX(), other.getX()) == 0 &&

Double.compare(this.getY(), other.getY()) == 0;

}

return eq;

}

This version always works.

== vs Double.compare

� the issue here is quite subtle

� if you use == to compare the coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be false because NaN == NaN is always false

� NaN means “not a number” and is used to represent a
mathematically undefined number

� such as occurs when you divide zero by zero

� the behavior of NaN is defined in the IEEE 754 standard for
floating point arithmetic (i.e., this is not just a Java issue)

83

== vs Double.compare

� if you use == to compare the coordinates then all hash
based collections and all sets will behave strangely
with vectors having NaN as a component

Set<Vector2D> set = new HashSet<Vector2D>();

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

set.add(u);

set.add(v);

System.out.println(set.size()); // prints 2

� sets are supposed to reject duplicate elements but
there are 2 identical vectors in set

� occurs because Set uses equals to check for duplicates

84

== vs Double.compare

� if you use Double.compare to compare the
coordinates then

Vector2D u = new Vector2D(0.0 / 0.0, 1.0); // (NaN, 1.0)

Vector2D v = new Vector2D(u); // (NaN, 1.0)

boolean eq = u.equals(v);

eq will be true because Double.compare is
implemented to allow for equality of NaN

� checking for equality of NaN can be useful when trying
to track down errors in computations

� also the hash based collections and sets will work as
expected

85

== vs Double.compare

� there is a side effect of using Double.compare to
compare the coordinates

Vector2D u = new Vector2D(0.0, 1.0); // (0.0, 1.0)

Vector2D v = new Vector2D(-0.0, 1.0); // (-0.0, 1.0)

boolean eq = u.equals(v);

eq will be false because Double.compare considers
0.0 and -0.0 to be unequal

� can you see how to implement equals to allow for equality
of NaN and equality of 0.0 and -0.0?

86

== vs Double.compare

� the real issue here is that floating point arithmetic is
tricky and affects every programming language

� a good starting point for learning more about some of
the issues involved

� http://floating-point-gui.de/

87

Observe That...

88

� instead of directly using the fields, we use accessor
methods where possible

� this reduces code duplication, especially if accessing an
field requires a lot of code

� this gives us the possibility to change the representation of
the fields in the future

� as long as we update the accessor methods (but we would have to
do that anyway to preserve the API)

� for example, instead of two attributes x and y, we might want to
use an array or some sort of Collection

� the notes [notes 2.3.1] call this delegating to accessors

Observe That...

89

� instead of directly modifying the attributes, we use
mutator methods where possible

� this reduces code duplication, especially if modifying an
attribute requires a lot of code

� this gives us the possibility to change the representation of
the attributes in the future

� as long as we update the mutator methods (but we would have to
do that anyway to preserve the API)

� for example, instead of two attributes x and y, we might
want to use an array or some sort of Collection

� the notes [notes 2.3.1] call this delegating to mutators

Things to Think About

90

� how do you implement Vector2D using an array to
store the coordinates?

� how do you implement Vector2D using a
Collection to store the coordinates?

� how do you implement VectorND, an N-dimensional
vector?

hashCode and compareTo

91

hashCode()

92

� if you override equals() you must override
hashCode()

� otherwise, the hashed containers won't work properly
� recall that we did not override hashCode() for PhoneNumber

// client code somewhere

PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();

h.add(pizza);

System.out.println(h.contains(pizza)); // true

PhoneNumber pizzapizza =

new PhoneNumber(416, 967, 1111);

System.out.println(h.contains(pizzapizza)); // false

[notes 2.3.5]

Arrays as Containers

93

� suppose you have an array of unique PhoneNumbers

� how do you compute whether or not the array contains a
particular PhoneNumber?

public static boolean

hasPhoneNumber(PhoneNumber p,

PhoneNumber[] numbers)

{

if (numbers != null) {

for(PhoneNumber num : numbers) {

if (num.equals(p)) {

return true;

}

}

}

return false;

}

94

� called linear search or sequential search

� doubling the length of the array doubles the amount of
searching we need to do

� if there are n PhoneNumbers in the array:

� best case
� the first PhoneNumber is the one we are searching for

� 1 call to equals()

� worst case
� the PhoneNumber is not in the array

� n calls to equals()

� average case
� the PhoneNumber is somewhere in the middle of the array

� approximately (n/2) calls to equals()

Hash Tables

95

� you can think of a hash table as being an array of
buckets where each bucket holds the stored objects

0 1 2 3 ... N

Insertion into a Hash Table

96

� to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

0 1 2 3 ... N

a.hashCode() 2a

b.hashCode() 0b

c.hashCode() Nc
d.hashCode() Nd

means the hash table takes the hash code and does something to
it to make it fit in the range 0—N

Insertion into a Hash Table

97

� to insert an object a, the hash table calls
a.hashCode() method to compute which bucket to
put the object into

b a c

d

0 1 2 3 ... N

Search on a Hash Table

98

� to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

Search on a Hash Table

99

� to see if a hash table contains an object a, the hash
table calls a.hashCode() method to compute which
bucket to look for a in

b a c

d

0 1 2 3 ... N

a.hashCode() 2
z.hashCode() N

a.equals()

true

z.equals()

false

z.equals()

false

100

� searching a hash table is usually much faster than
linear search
� doubling the number of elements in the hash table usually

does not noticably increase the amount of search needed

� if there are n PhoneNumbers in the hash table:
� best case

� the bucket is empty, or the first PhoneNumber in the bucket is
the one we are searching for
� 0 or 1 call to equals()

� worst case
� all n of the PhoneNumbers are in the same bucket

� n calls to equals()

� average case
� the PhoneNumber is in a bucket with a small number of other
PhoneNumbers

� a small number of calls to equals()

Object hashCode()

101

� if you don't override hashCode(), you get the
implementation from Object.hashCode()

� Object.hashCode() uses the memory address of the object
to compute the hash code

102

� note that pizza and pizzapizza are distinct objects

� therefore, their memory locations must be different

� therefore, their hash codes are different (probably)

� therefore, the hash table looks in the wrong bucket (probably)
and does not find the phone number even though
pizzapizza.equals(pizza) *

// client code somewhere

PhoneNumber pizza = new PhoneNumber(416, 967, 1111);

HashSet<PhoneNumber> h = new HashSet<PhoneNumber>();

h.add(pizza);

PhoneNumber pizzapizza = new PhoneNumber(416, 967, 1111);

System.out.println(h.contains(pizzapizza)); // false

* unless you're from Naples

A Bad (but legal) hashCode()

103

public final class PhoneNumber {

// attributes, constructors, methods ...

@Override public int hashCode()

{

return 1; // or any other constant int

}

}

� this will cause a hashed container to put all
PhoneNumbers in the same bucket

A Slightly Better hashCode()

104

public final class PhoneNumber {

// attributes, constructors, methods ...

@Override public int hashCode()

{

return (int)(this.getAreaCode() +

this.getExchangeCode() +

this.getStationCode());

}

}

105

� the basic idea is generate a hash code using the
attributes of the object

� it would be nice if two distinct objects had two distinct
hash codes

� but this is not required; two different objects can have the
same hash code

� it is required that:

1. if x.equals(y) then x.hashCode() == y.hashCode()

2. x.hashCode() always returns the same value if x does not
change its state

Something to Think About

106

� what do you need to be careful of when putting a
mutable object into a HashSet?

� can you avoid the problem by using immutable objects?

compareTo

107

Comparable Objects

108

� many value types have a natural ordering

� that is, for two objects x and y, x is less than y is
meaningful
� Short, Integer, Float, Double, etc

� Strings can be compared in dictionary order

� Dates can be compared in chronological order

� you might compare Vector2Ds by their length

� Dies can be compared by their face value

� if your class has a natural ordering, consider
implementing the Comparable interface

� doing so allows clients to sort arrays or Collections of your
object

Interfaces

109

� an interface is (usually) a group of related methods
with empty bodies

� the Comparable interface has just one method

public interface Comparable<T>

{

int compareTo(T t);

}

� a class that implements an interfaces promises to
provide an implementation for every method in the
interface

compareTo()

110

� Compares this object with the specified object for
order. Returns a negative integer, zero, or a positive
integer as this object is less than, equal to, or greater
than the specified object.

� Throws a ClassCastException if the specified object
type cannot be compared to this object.

Die compareTo()

111

public class Die implements Comparable<Die> {

// attributes, constructors, methods ...

public int compareTo(Die other) {

int result = 0;

if (this.getValue() < other.getValue()) {

result = -1;

}

else if (this.getValue() > other.getValue()) {

result = 1;

}

return result;

}

}

Die compareTo()

112

� the following also works for the Die class, but is
dangerous in general:

public int compareTo(Die other) {

int result = this.getValue() – other.getValue();

return result;

}

Comparable Contract

113

1. the sign of the returned int must flip if the order of
the two compared objects flip

� if x.compareTo(y) > 0 then y.compareTo(x) < 0

� if x.compareTo(y) < 0 then y.compareTo(x) > 0

� if x.compareTo(y) == 0 then y.compareTo(x) == 0

Comparable Contract

114

2. compareTo() must be transitive

� if x.compareTo(y) > 0 && y.compareTo(z) > 0 then
x.compareTo(z) > 0

� if x.compareTo(y) < 0 && y.compareTo(z) < 0 then
x.compareTo(z) < 0

� if x.compareTo(y) == 0 && y.compareTo(z) == 0 then
x.compareTo(z) == 0

Comparable Contract

115

3. if x.compareTo(y) == 0 then the signs of
x.compareTo(z) and y.compareTo(z) must be
the same

Consistency with equals

116

� an implementation of compareTo() is said to be
consistent with equals() when

if x.compareTo(y) == 0 then

x.equals(y) == true

� and

if x.equals(y) == true then

x.compareTo(y) == 0

Not in the Comparable Contract

117

� it is not required that compareTo() be consistent with
equals()

� that is

if x.compareTo(y) == 0 then

x.equals(y) == false is acceptable

� similarly

if x.equals(y) == true then

x.compareTo(y) != 0 is acceptable

� try to come up with examples for both cases above

Implementing compareTo

� implementing compareTo is similar to implementing
equals

� you need to compare all of the fields

� starting with the field that is most significant for ordering
purposes and working your way down

118

PhoneNumber compareTo()

119

public class PhoneNumber implements Comparable<PhoneNumber> {

// attributes, constructors, methods ...

public int compareTo(PhoneNumber other) {

int result = 0;

result = this.getAreaCode() – other.getAreaCode();

if (result == 0) {

result = this.getExchangeCode() – other.getExchangeCode();

}

if (result == 0) {

result = this.getStationCode() – other.getStationCode();

}

return result;

}

}

Implementing compareTo

� if you are comparing fields of type float or double
you should use Float.compare or
Double.compare instead of <, >, or ==

� if your compareTo implementation is broken, then
any classes or methods that rely on compareTo will
behave erratically
� TreeSet, TreeMap

� many methods in the utility classes Collections and
Arrays

120

Mixing Static and Non-Static

121

static Fields

122

� a field that is static is a per-class member

� only one copy of the field, and the field is associated with
the class

� every object created from a class declaring a static field shares the
same copy of the field

� static fields are used when you really want only one
common instance of the field for the class

� less common than non-static fields

Example

123

� a textbook example of a static field is a counter that
counts the number of created instances of your class

// adapted from Sun's Java Tutorial

public class Bicycle {

// some other fields here...

private static int numberOfBicycles = 0;

public Bicycle() {

// set some attributes here...

Bicycle.numberOfBicycles++;

}

public static int getNumberOfBicyclesCreated() {

return Bicycle.numberOfBicycles;

}

}

note:
not this.numberOfBicycles++

[notes 3.2]

124

� another common example is to count the number of
times a method has been called

public class X {

private static int numTimesXCalled = 0;

private static int numTimesYCalled = 0;

public void xMethod() {

// do something... and then update counter

++X.numTimesXCalled;

}

public void yMethod() {

// do something... and then update counter

++X.numTimesYCalled;

}

}

Mixing Static and Non-static Fields

125

� a class can declare static (per class) and non-static (per
instance) fields

� a common textbook example is giving each instance a
unique serial number

� the serial number belongs to the instance

� therefore it must be a non-static field

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

// ...

126

� how do you assign each instance a unique serial
number?

� the instance cannot give itself a unique serial number
because it would need to know all the currently used serial
numbers

� could require that the client provide a serial number
using the constructor

� instance has no guarantee that the client has provided a
valid (unique) serial number

127

� the class can provide unique serial numbers using
static fields

� e.g. using the number of instances created as a serial
number

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.numberOfBicycles;

Bicycle.numberOfBicycles++;

}

}

128

� a more sophisticated implementation might use an
object to generate serial numbers

public class Bicycle {

// some attributes here...

private static int numberOfBicycles = 0;

private static final

SerialGenerator serialSource = new SerialGenerator();

private int serialNumber;

public Bicycle() {

// set some attributes here...

this.serialNumber = Bicycle.serialSource.getNext();

Bicycle.numberOfBicycles++;

}

}

Static Methods

129

� recall that a static method is a per-class method

� client does not need an object to invoke the method

� client uses the class name to access the method

� a static method can only use static fields of the
class

� static methods have no this parameter because a static
method can be invoked without an object

� without a this parameter, there is no way to access non-
static fields

� non-static methods can use all of the fields of a class
(including static ones)

130

public class Bicycle {

// some attributes, constructors, methods here...

public static int getNumberCreated()

{

return Bicycle.numberOfBicycles;

}

public int getSerialNumber()

{

return this.serialNumber;

}

public void setNewSerialNumber()

{

this.serialNumber = Bicycle.serialSource.getNext();

}

}

static method
can only use

static attributes

non-static method
can use

non-static attributes

and static attributes

