
Utilities (Part 2)

Implementing static features

1

Goals for Today

2

� learn about preventing class instantiation

� learn what a utility is in Java

� learn about implementing methods

� static methods

� pass-by-value

� Javadoc

Puzzle 2

3

� what does the following program print?

public class Puzzle02

{

public static void main(String[] args)

{

final long

MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;

final long

MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}

}

4

� prints 5

� the problem occurs because the expression

24 * 60 * 60 * 1000 * 1000

evaluates to a number bigger than int can hold
� 86,400,000,000 > 2,147,483,647 (Integer.MAX_VALUE)

� called overflow

� notice that the numbers in the expression are of type int

� Java will evaluate the expression using int even though the
constant MICROS_PER_DAY is of type long

� solution: make sure that the first value matches the
destination type

24L * 60 * 60 * 1000 * 1000

Overflow

� several well known problems caused by issues related
to overflow

� Year 2000 problem

� Year 2038 problem

� Ariane 5 Flight 501

5

new Yahtzee Objects

6

� our Yahtzee API does not expose a constructor
� but

Yahtzee y = new Yahtzee();

is legal

� if you do not define any constructors, Java will generate a
default no-argument constructor for you
� e.g., we get the public constructor

public Yahtzee() { }

even though we did not implement it

� our Yahtzee API exposes only static constants
(and methods later on)

� its state is constant

� there is no benefit in instantiating a Yahtzee object

� a client can access the constants (and methods) without
creating a Yahtzee object

boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

� can prevent instantiation by declaring a private
constructor

Preventing Instantiation

7

Version 2 (prevent instantiation)

8

public class Yahtzee {

// fields

public static final int NUMBER_OF_DICE = 5;

// constructors

// suppress default ctor for non-instantiation

private Yahtzee() {

}

}

[notes 1.2.3]

Version 2.1 (even better)

9

public class Yahtzee {

// fields

public static final int NUMBER_OF_DICE = 5;

// constructors

// suppress default ctor for non-instantiation

private Yahtzee() {

throw new AssertionError();

}

}

[notes 1.2.3]

private

10

� private fields, constructors, and methods cannot
be accessed by clients

� they are not part of the class API

� private fields, constructors, and methods are
accessible only inside the scope of the class

� a class with only private constructors indicates to
clients that they cannot use new to create instances of
the class

Utilities

11

� in Java, a utility class is a class having only static fields
and static methods

� uses:

� group related methods on primitive values or arrays
� java.lang.Math or java.util.Arrays

� group static methods for objects that implement an
interface
� java.util.Collections

� [notes 1.6.1–1.6.3]

� group static methods on a final class

� more on this when we talk about inheritance

12

public class Yahtzee {

// fields

public static final int NUMBER_OF_DICE = 5;

// constructors

// suppress default ctor for non-instantiation

private Yahtzee() {

throw new AssertionError();

}

public static boolean isThreeOfAKind(List<Die> dice) {

Collections.sort(dice);

boolean result =

dice.get(0).getValue() == dice.get(2).getValue() ||

dice.get(1).getValue() == dice.get(3).getValue() ||

dice.get(2).getValue() == dice.get(4).getValue();

return result;

}

}

Method Signatures

13

public static boolean isThreeOfAKind(List<Die> dice)

� a method is a member that performs an action

� a method has a signature (name + number and types of the
parameters)

isThreeOfAKind(List<Die>)

� all method signatures in a class must be unique

name number and types of parameters

signature

Method Signatures

� what happens if we try to introduce a second method

public static boolean

isThreeOfAKind(Collection<Integer> dice) ?

� what about

public static boolean

isThreeOfAKind(List<Integer> dice) ?

14

Methods

15

public static boolean isThreeOfAKind(List<Die> dice)

� a method returns a typed value or void

boolean

� use return to indicate the value to be returned

public static boolean isThreeOfAKind(List<Die> dice) {

Collections.sort(dice);

boolean result =

dice.get(0).getValue() == dice.get(2).getValue() ||

dice.get(1).getValue() == dice.get(3).getValue() ||

dice.get(2).getValue() == dice.get(4).getValue();

return result;

}

Parameters

16

� sometimes called formal parameters

� for a method, the parameter names must be unique

� but a parameter can have the same name as an attribute
(see [notes 1.3.3])

� the scope of a parameter is the body of the method

static Methods

17

� a method that is static is a per-class member

� client does not need an object to invoke the method

� client uses the class name to access the method

boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

� static methods are also called class methods

� a static method can only use static fields of the class

[notes 1.2.4], [AJ 249-255]

Invoking Methods

18

� a client invokes a method by passing arguments to the
method

� the types of the arguments must be compatible with the
types of parameters in the method signature

� the values of the arguments must satisfy the preconditions
of the method contract [JBA 2.3.3]

List<Die> dice = new ArrayList<Die>();

for (int i = 0; i < 5; i++) {

dice.add(new Die());

}

boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

argument

Pass-by-value

� Java uses pass-by-value to:

� transfer the value of the arguments to the method

� transfer the return value back to the client

� consider the following utility class and its client…

19

20

import type.lib.Fraction;

public class Doubler {

private Doubler() {

}

// tries to double x

public static void twice(int x) {

x = 2 * x;

}

// tries to double f

public static void twice(Fraction f) {

long numerator = f.getNumerator();

f.setNumerator(2 * numerator);

}

}

21

import type.lib.Fraction;

public class TestDoubler {

public static void main(String[] args) {

int a = 1;

Doubler.twice(a);

Fraction b = new Fraction(1, 2);

Doubler.twice(b);

System.out.println(a);

System.out.println(b);

}

}

Pass-by-value

� what is the output of the client program?

� try it and see

� an invoked method runs in its own area of memory
that contains storage for its parameters

� each parameter is initialized with the value of its
corresponding argument

22

Pass-by-value with Reference Types

23

Fraction b =

new Fraction(1, 2);

64 client

b

500 Fraction object

numer 1

denom 2

500 value of b is a
reference to the

new
Fraction object

value of b is not the
Fraction 1/2

Pass-by-value with Reference Types

24

Fraction b =

new Fraction(1, 2);

Doubler.twice(b);

64 client

b

500 Fraction object

numer 1

denom 2

600 Doubler.twice

f

500

500

parameter f
is an independent
copy of the value

of argument b
(a reference)

the value of b
is passed to the

method
Doubler.twice

Pass-by-value with Reference Types

25

Fraction b =

new Fraction(1, 2);

Doubler.twice(b);

64 client

b

500 Fraction object

numer 1 2

denom 2

600 Doubler.twice

f

500

500

Doubler.twice

multiplies the
numerator of the

Fraction object by
2

Pass-by-value with Primitive Types

26

int a = 1;
64 client

a 1 value of a is the
integer value that

we stored

Pass-by-value with Primitive Types

27

int a = 1;

Doubler.twice(a);

64 client

a

800 Doubler.twice

x 1

1

parameter x
is an independent
copy of the value

of argument a
(a primitive)

the value of a
is passed to the

method
Doubler.twice

this is a different
Doubler.twice

method than the
previous example

(now resides at
address 800)

Pass-by-value with Reference Types

28

int a = 1;

Doubler.twice(a);

64 client

a

800 Doubler.twice

x

1

1 2

Doubler.twice

multiplies the value
of x by 2;

that's it, nothing
else happens

Pass-by-value

29

� Java uses pass-by-value for all types (primitive and
reference)

� an argument of primitive type cannot be changed by a
method

� an argument of reference type can have its state changed by
a method

� pass-by-value is used to return a value from a method
back to the client

Introduction to Testing

30

Testing

� testing code is a vital part of the development process

� the goal of testing is to find defects in your code

� Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for
showing their absence.
—Edsger W. Dijkstra

� how can we test our utility class?

� write a program that uses it and verify the result

31

32

public class IsThreeOfAKindTest {

public static void main(String[] args) {

// make a list of 5 dice that are 3 of a kind

// check if Yahtzee.isThreeOfAKind returns true

}

}

33

public class IsThreeOfAKindTest {

public static void main(String[] args) {

// make a list of 5 dice that are 3 of a kind

List<Die> dice = new ArrayList<Die>();

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 2)); // 2

dice.add(new Die(6, 3)); // 3

// check if Yahtzee.isThreeOfAKind returns true

}

}

34

public class IsThreeOfAKindTest {

public static void main(String[] args) {

// make a list of 5 dice that are 3 of a kind

List<Die> dice = new ArrayList<Die>();

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 2)); // 2

dice.add(new Die(6, 3)); // 3

// check if Yahtzee.isThreeOfAKind returns true

if (Yahtzee.isThreeOfAKind(dice) == true) {

System.out.println("success");

}

}

}

35

public class IsThreeOfAKindTest {

public static void main(String[] args) {

// make a list of 5 dice that are 3 of a kind

List<Die> dice = new ArrayList<Die>();

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 2)); // 2

dice.add(new Die(6, 3)); // 3

// check if Yahtzee.isThreeOfAKind returns false

if (Yahtzee.isThreeOfAKind(dice) == false) {

throw new RuntimeException("FAILED: " +

dice + " is a 3-of-a-kind");

}

}

}

Testing

� checking if a test fails and throwing an exception
makes it easy to find tests that fail

� because uncaught exceptions terminate the running
program

� unfortunately, stopping the test program might mean that
other tests remain unrunnable

� at least until you fix the broken test case

36

Unit Testing

� A unit test examines the behavior of a distinct unit of
work. Within a Java application, the "distinct unit of
work" is often (but not always) a single method. … A
unit of work is a task that isn't directly dependent on
the completion of any other task."

� from the book JUnit in Action

37

JUnit

� JUnit is a testing framework for Java

� A framework is a semi-complete application. A
framework provides a reusable, common structure to
share among applications. Developers incorporate the
framework into their own application and extend it to
meet their specific needs"

� from the book JUnit in Action

38

JUnit

� JUnit provides a way for creating:

� test cases

� a class that contains one or more tests

� test suites

� a group of tests

� test runner

� a way to automatically run test suites

39

40

package cse1030.games;

import static org.junit.Assert.*;

import java.util.ArrayList;

import java.util.List;

import org.junit.Test;

public class YahtzeeTest {

@Test

public void isThreeOfAKind() {

// make a list of 5 dice that are 3 of a kind

List<Die> dice = new ArrayList<Die>();

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 2)); // 2

dice.add(new Die(6, 3)); // 3

assertTrue(Yahtzee.isThreeOfAKind(dice));

}

JUnit

� our unit test tests if isThreeOfAKind produces the
correct answer (true) if the list contains a three of a
kind

� we should also test if isThreeOfAKind produces the
correct answer (false) if the list does not contain a
three of a kind

41

42

@Test

public void notThreeOfAKind() {

// make a list of 5 dice that are not 3 of a kind

List<Die> dice = new ArrayList<Die>();

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 1)); // 1

dice.add(new Die(6, 6)); // 6

dice.add(new Die(6, 2)); // 2

dice.add(new Die(6, 3)); // 3

assertFalse(Yahtzee.isThreeOfAKind(dice));

}

}

JUnit

� our unit tests use specific cases of rolls:
� 1, 1, 1, 2, 3 isThreeOfAKind

� 1, 1, 6, 2, 3 notThreeOfAKind

� the tests don't tell us if our method works for different
rolls:

� 3, 2, 1, 1, 1 ?

� 4, 6, 2, 3, 5 ?

� can you write a unit test that tests every possible roll
that is a three of a kind? every possible roll that is not
three of a kind?

43

JUnit

� notice that our test tests one specific three-of-a-kind

� 1, 1, 1, 2, 3

� shouldn't we test all possible three-of-a-kinds?

� or at least more three-of-a-kinds

� how can you generate a list of dice that is guaranteed
to contain three-of-a-kind?

44

45

@Test

public void isThreeOfAKind() {

for (int i = 1; i <= 6; i++) {

Die d1 = new Die(6, i);

Die d2 = new Die(6, i);

Die d3 = new Die(6, i);

for (int j = 1; j <= 6; j++) {

Die d4 = new Die(6, j);

for (int k = 1; k <= 6; k++) {

Die d5 = new Die(6, k);

List<Die> dice = new ArrayList<Die>();

dice.add(d1);

dice.add(d2);

dice.add(d3);

dice.add(d4);

dice.add(d5);

Collections.shuffle(dice);

assertTrue(Yahtzee.isThreeOfAKind(dice));

}

}

}

}

JUnit

� how many variations of three-of-a-kind are tested in
our new test?

� how many ways can you roll three-of-a-kind using five
dice?

46

JUnit

� we are now somewhat confident that our method
returns true if the list contains a three-of-a-kind

� but we still have not tested if our method returns
false if the list does not contain a three-of-a-kind

� how can you generate a list of dice that is guaranteed
to not contain three-of-a-kind?

47

48

@Test

public void notThreeOfAKind() {

final int TRIALS = 1000;

for (int t = 0; t < TRIALS; t++) {

List<Die> twelveDice = new ArrayList<Die>();

for (int i = 1; i <= 6; i++) {

twelveDice.add(new Die(6, i));

twelveDice.add(new Die(6, i));

}

Collections.shuffle(twelveDice);

List<Die> dice = twelveDice.subList(0, 5);

assertFalse(Yahtzee.isThreeOfAKind(dice));

}

}

Explanation of Previous Slide

� a trick is to create a list of 12 dice where there are:

� 2 ones,

� 2 twos,

� 2 threes,

� 2 fours,

� 2 fives, and

� 2 sixes

� shuffle the list (so that the dice appear in some
random order)

� use the first 5 dice

49

Documenting Code

50

Javadoc

� documenting code was not a new idea when Java was
invented

� however, Java was the first major language to embed
documentation in the code and extract the documentation
into readable electronic APIs

� the tool that generates API documents from comments
embedded in the code is called Javadoc

51

Javadoc

52

� Javadoc processes doc comments that immediately
precede a class, attribute, constructor or method
declaration

� doc comments delimited by /** and */

� doc comment written in HTML and made up of two parts

1. a description

� first sentence of description gets copied to the summary section

� only one description block; can use <p> to create separate
paragraphs

2. block tags

� begin with @ (@param, @return, @exception)

� @pre. is non-standard (custom tag used in CSE1030)

Javadoc Guidelines

53

� http://www.oracle.com/technetwork/java/javase/documentation/inde
x-137868.html

� [notes 1.5.1, 1.5.2]

� precede every exported class, interface, constructor,
method, and attribute with a doc comment

� for methods the doc comment should describe the
contract between the method and the client

� preconditions ([notes 1.4], [JBA 2.3.3])

� postconditions ([notes 1.4], [JBA 2.3.3])

Javadoc Examples

� See public APIs

� Lab exercises…

54

Classes (Part 1)

Implementing non-static features

55

Goals

� implement a small immutable class with non-static
attributes and methods

� recipe for immutability
� this

� toString method

� equals method

56

Value Type Classes

57

� a value type is a class that represents a value

� examples of values: name, date, colour, mathematical
vector

� Java examples: String, Date, Integer

� the objects created from a value type class can be:

� mutable: the state of the object can change
� Date

� immutable: the state of the object is constant once it is
created
� String, Integer (and all of the other primitive wrapper

classes)

Immutable Classes

58

� a class defines an immutable type if an instance of the
class cannot be modified after it is created

� each instance has its own constant state

� more precisely, the externally visible state of each object appears
to be constant

� Java examples: String, Integer (and all of the other
primitive wrapper classes)

� advantages of immutability versus mutability

� easier to design, implement, and use

� can never be put into an inconsistent state after creation

North American Phone Numbers

� North American Numbering Plan is the standard used
in Canada and the USA for telephone numbers

� telephone numbers look like

416-736-2100

59

area
code

exchange
code

station
code

Designing a Simple Immutable Class

60

� PhoneNumber API

PhoneNumber

- areaCode : short

- exchangeCode : short

- stationCode : short

+ PhoneNumber(int, int, int)

+ equals(Object) : boolean

+ getAreaCode() : short

+ getExchangeCode() : short

+ getStationCode() : short

+ toString() : String

none of these
features are static

61

package cse1030;

public class PhoneNumber {

}

Recipe for Immutability

� the recipe for immutability in Java is described by
Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended

3. Make all fields final

4. Make all fields private

5. Prevent clients from obtaining a reference to any
mutable fields

62 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

Recipe for Immutability 1

63

1. Do not provide any methods that can alter the state
of the object

� methods that modify state are called mutators

� Java example of a mutator:

import java.util.Calendar;

public class CalendarClient {

public static void main(String[] args)

{

Calendar now = Calendar.getInstance();

// set hour to 5am

now.set(Calendar.HOUR_OF_DAY, 5);

}

}

Recipe for Immutability 2

64

2. Prevent the class from being extended

� one way to do this is to mark the class as final

� a final class cannot be extended using inheritance

� don't confuse final variable and final classes

� the reason for this step will become clear in a couple
of weeks

65

package cse1030;

public final class PhoneNumber {

}

Recipe for Immutability 3

66

3. Make all fields final

� recall that final means that the field can only be
assigned to once

� final fields make your intent clear that the class is
immutable

67

package cse1030;

public final class PhoneNumber {

final int areaCode;

final int exchangeCode;

final int stationCode;

}

Recipe for Immutability 4

68

4. Make all fields private

� this applies to all public classes (including mutable
classes)

� in public classes, strongly prefer private fields

� and avoid using public fields

� private fields support encapsulation

� because they are not part of the API, you can change them (even
remove them) without affecting any clients

� the class controls what happens to private fields

� it can prevent the fields from being modified to an inconsistent state

69

package cse1030;

public final class PhoneNumber {

private final int areaCode;

private final int exchangeCode;

private final int stationCode;

}

Recipe for Immutability 5

70

5. Prevent clients from obtaining a reference to any
mutable fields

� recall that final fields have constant state only if the
type of the attribute is a primitive or is immutable

� if you allow a client to get a reference to a mutable field,
the client can change the state of the field, and hence, the
state of your immutable class

� revisit this point when we talk about composition

� also, none of our fields are reference types so we don't have to
worry about this point

this

71

� every non-static method of a class has an implicit
parameter called this

� recall that a non-static method requires an object to call
the method

� inside getAreaCode, this is a reference to object used to
invoke the method

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);

int areaCode = num.getAreaCode(); // get the

// area code that

// belongs to num

getAreaCode

72

� how does the method getAreaCode() get the area
code for the correct instance?

� this is a reference to the calling object

return the area code belonging
to the PhoneNumber object that
was used to invoke the method

/**

* Get the area code of this phone number.

*

* @return the area code of this phone number
*/

public int getAreaCode() {
return this.areaCode;

}

getExchangeCode and getStationCode

73

� getExchangeCode() and getStationCode() are
very similar

return the exchange code belonging
to the PhoneNumber object that
was used to invoke the method

/**

* Get the exchange code of this phone number.

*

* @return the exchange code of this phone number
*/

public int getExchangeCode() {
return this.exchangeCode;

}

getExchangeCode and getStationCode

74

� getExchangeCode() and getStationCode() are
very similar

return the station code belonging
to the PhoneNumber object that
was used to invoke the method

/**

* Get the station code of this phone number.

*

* @return the station code of this phone number
*/

public int getStationCode() {
return this.stationCode;

}

toString()

75

� recall that every class extends java.lang.Object

� Object defines a method toString() that returns a
String representation of the calling object

� we can call toString() with our current PhoneNumber class

� this prints something like
phonenumber.PhoneNumber@19821f

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);

System.out.println(num.toString());

toString()

76

� toString() should return a concise but informative
representation that is easy for a person to read

� it is recommended that all subclasses override this
method

� this means that any non-utility class you write should
redefine the toString() method

� in this case, our new toString() method has the same
declaration as toString() in java.lang.Object

toString()

77

� it is "easy" to override toString() for our class
/**
* Returns a string representation of this phone number. The string starts
* with the area code inside of parenthesis, followed by a space, followed by
* the exchange code, followed by a hyphen, followed by the station code. The
* area code and exchange code always have three digits (zero-padded), and the
* station code always has four digits (zero-padded). For example, the string
* representation of the phone number 416-736-2100 is:
*
* <p>
* <code>(416) 736-2100</code>
*
* @return a string representation of this phone number
* @see java.lang.Object#toString()
*/

@Override
public String toString() {
return String.format("(%1$03d) %2$03d-%3$04d",

this.areaCode,
this.exchangeCode,
this.stationCode);

}

Constructors

78

Constructors

79

� constructors are responsible for initializing instances
of a class

� usually, a constructor will set the fields of the object to:

� some reasonable default values, or

� some client specified values,

� or some combination of the two

[notes 2.2.3]

Constructors

80

� a constructor declaration looks a little bit like a
method declaration:

� the name of a constructor is the same as the class name

� a constructor may have an access modifier (but no other
modifiers)

81

public PhoneNumber() {

}

public PhoneNumber(int areaCode,

int exchangeCode,

int stationCode) {

}

the default constructor
(has no parameters)

a constructor with
three parameters

Constructors

82

� every constructor has an implicit this parameter

� the this parameter is a reference to the object that is
currently being constructed

83

public PhoneNumber() {

this.areaCode = 800;

this.exchangeCode = 555;

this.stationCode = 1111;

}

public PhoneNumber(int areaCode,

int exchangeCode, int stationCode) {

this.areaCode = areaCode;

this.exchangeCode = exchangeCode;

this.stationCode = stationCode;

}

Bell Canada operator
phone number?

client specified
phone number

Constructors

84

� a constructor will often need to validate its arguments

� because you generally should avoid creating objects with
invalid state

� what are valid area codes, exchange codes, and station
codes?

� we will assume:

� must not be negative

� area code and exchange codes < 1,000

� station code < 10,000

� reality is more complicated...

85

public PhoneNumber(int areaCode,

int exchangeCode, int stationCode) {

if (areaCode < 0 || areaCode > 999) {

throw new IllegalArgumentException("bad area code");

}

if (exchangeCode < 0 || exchangeCode > 999) {

throw new IllegalArgumentException("bad exchange code");

}

if (stationCode < 0 || stationCode > 9999) {

throw new IllegalArgumentException("bad station code");

}

this.areaCode = areaCode;

this.exchangeCode = exchangeCode;

this.stationCode = stationCode;

}

Comment on Immutability

� notice that our constructors make it impossible for a
client to create an invalid phone number

� also recall that our class is immutable

� i.e., the client cannot change a phone number once it is
created

� the above two features guarantee that all
PhoneNumber objects will be valid phone numbers

86

