
Introduction to Computer Science II

CSE1030A

1

Academic Support Programs: Bethune

� having trouble with your FSC and LSE courses?

� consider using the Academic Support Programs at Bethune
College

� PASS

� free, informal, structured, facilitated study groups:
http://bethune.yorku.ca/pass/

� For the Summer 2014 term, the PASS Leader for CSE 1030 is
Mr. Arinze Anozie, beckyngomakaya@hotmail.com

� peer tutoring

� free, one-on-one, drop-in tutoring:
http://bethune.yorku.ca/tutoring/

2

Who Am I?

3

� Dr. Andriy Pavlovych

� Office

� Lassonde 2001

� Office hours : check with syllabus on course web page

� Most probably – 1 hour right before class

� email
� andriyp@cse.yorku.ca

� (use “CSE 1030” in the subject line)

Course Format

4

� everything you need to know will be on course website

� http://www.eecs.yorku.ca/course/1030

� labs start on Thursday* (June 26)

� * – Subject to change

� BUT you should do Lab 0 this week if you have not
taken an EECS course before OR if you have not used
eclipse before

CSE1030 Overview

5

� in CSE1020, you learned how to use objects to write
Java programs
� a Java program is made up of one or more interacting

objects

� each object is an instance of a class

� where do the classes come from?

� in CSE1030, you will learn how to design and
implement classes
� introduction to concepts in software engineering and

computer science

What You Should Know from CSE1020

� how to read an API

� determine what package a class is located in

� determine what the class/interface/field/method is
supposed to do

� determine the name of a method

� determine what types a method requires for its parameters

� determine what type a method returns

� determine what exceptions might be thrown

6

What You Should Know from CSE1020

� create and use primitive type variables and their
associated operators
� int, double, boolean, char

7

What You Should Know from CSE1020

� create (using a constructor) and use reference
variables
� e.g., type.lib.Fraction, java.util.Date

� Random, String, List, Set, Map

8

What You Should Know from CSE1020

� understand the difference between primitive and
reference types

� memory diagrams

9

What You Should Know from CSE1020

� understand the difference between == and equals

10

What You Should Know from CSE1020

� use class methods (and fields)

� e.g.,

double value = Math.sqrt(2.0);

� use instance methods (and fields)

� e.g.,

String s = "hello";

String t = s.toUpperCase();

11

What You Should Know from CSE1020

� if statements

� e.g.

if (grade >= 65) {

System.out.println("Go to second year");

}

else {

System.out.println("Try again");

}

12

What You Should Know from CSE1020

� for loops

� e.g., for some String reference s

for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);

if (c == 'a') {

System.out.println(s + " contains an \'a\'");

break;

}

}

13

What You Should Know from CSE1020

� for each loops

� e.g., for some List<String> reference t

for (String s : t) {

for (int i = 0; i < s.length(); i++) {

char c = s.charAt(i);

if (c == 'a') {

System.out.println(s + " contains an \'a\'");

break;

}

}

}

14

What You Should Know from CSE1020

� the difference between aggregation and composition

� the differences between aliasing, shallow copying, and
deep copying

15

What You Should Know from CSE1020

� inheritance and substitutability

16

What You Should Know from CSE1020

� what an exception is

� the difference between a checked and unchecked
exception

� how to handle exceptions (try and catch)

17

What You Should Know from CSE1020

18

� style

public class hairsOnHead

{

public static void main(String[] args) {

int Diameter = 17;

double f = 0.5;

double areaCovered=f*Math.PI*Diameter*Diameter;

int d = 200;

double numberofhairs = areaCovered * d;

System.out.print("The number of hairs on a human head is ");

System.out.println(numberofhairs);

}

}

class names should start with a capital letter

inconsistent brace alignment

variable names should start with a lowercase letter; magic number

variable names should be informative; magic number

variable names should be informative; magic number

variable names should use camelcase

inconsistent indenting

1 space around operators

Organization of a Java Program

Packages, classes, fields, and methods

19

In This Lecture

1. demonstrate the use of eclipse by solving a CSE1020
eCheck problem

2. review the organization of a typical CSE1020 Java
program

3. improve the organization of the program by writing a
method

4. explain the organization of a typical Java program
that uses packages and multiple classes

20

eCheck04A

� in a nutshell:

� write a program that computes the fraction

where x, y, z, and t are proper fractions entered by a user
from the command line

21

tz

yx
A

+

+
=

eCheck04A Sample Output
For each fraction enter its numerator/denominator,

pressing ENTER after each

Enter x

83

100

Enter y

5

9

Enter z

667

1000

Enter t

-2

3

A = 12470/3 = 4156 2/3 = 4156.666666666667

22

eclipse Demo Here

� if you missed this class then you missed this demo

23

Organization of a CSE1020 Program

� one file
� Check04A.java

24

Organization of a CSE1020 Program

� one file
� Check04A.java

� zero or more import
statements

25

Organization of a CSE1020 Program

� file
� Check04A.java

� zero or more import
statements

� one class
� Check04A

26

Organization of a CSE1020 Program

� file

� Check04A.java

� zero or more import
statements

� one class
� Check04A

� one static method
� main

27

Organization of a Typical Java Program

� one or more files

28

Organization of a Typical Java Program

� one or more files

� one package name

29

Organization of a Typical Java Program

� one or more files

� zero or one package name

� zero or more import
statements

30

Organization of a Typical Java Program

� one or more files

� zero or one package name

� zero or more import
statements

� one class

31

Organization of a Typical Java Program

� one or more files

� zero or one package name

� zero or more import
statements

� one class

� one or more fields (class
variables)

32

Organization of a Typical Java Program

� one or more files

� zero or one package name

� zero or more import
statements

� one class

� zero or more fields (class
variables)

� zero or more more
constructors

33

Organization of a Typical Java Program

� one or more files

� zero or one package name

� zero or more import
statements

� one class

� zero or more fields (class
variables)

� zero or more more
constructors

� zero or more methods

34

Organization of a Typical Java Program

� it's actually more complicated than this

� static initialization blocks

� non-static initialization blocks

� classes inside of classes (inside of classes ...)

� classes inside of methods

� see http://docs.oracle.com/javase/tutorial/java/javaOO/index.html

35

Packages

� packages are used to organize Java classes into
namespaces

� a namespace is a container for names

� the namespace also has a name

36

Packages

� packages are use to organize related classes and
interfaces

� e.g., all of the Java API classes are in the package named
java

37

Packages

� packages can contain subpackages
� e.g., the package java contains packages named lang,
util, io, etc.

� the fully qualified name of the subpackage is the fully
qualified name of the parent package followed by a
period followed by the subpackage name
� e.g., java.lang, java.util, java.io

38

Packages

� packages can contain classes and interfaces
� e.g., the package java.lang contains the classes Object,
String, Math, etc.

� the fully qualified name of the class is the fully
qualified name of the containing package followed by
a period followed by the class name
� e.g., java.lang.Object, java.lang.String,
java.lang.Math

39

Packages

� packages are supposed to ensure that fully qualified
names are unique

� this allows the compiler to disambiguate classes with
the same unqualified name, e.g.,

your.Fraction f = new your.Fraction(1, 3);

type.lib.Fraction g = new type.lib.Fraction(1, 3);

40

Packages

� how do we ensure that fully qualified names are
unique?

� package naming convention

� packages should be organized using your domain name in
reverse, e.g.,
� EECS domain name eecs.yorku.ca

� package name ca.yorku.eecs

� we might consider putting everything for this course
under the following package
� ca.yorku.eecs.cse1030

41

Packages

� most Java implementations assume that your directory
structure matches the package structure, e.g.,
� there is a sequence of folders ca\yorku\eecs\cse1030

inside the project src folder

42

eclipse workspace folder

project folder

project sources folder

Java source files

Things For You to do this Week

� get a CSE account if you do not already have one

� do Lab 00 to get (re)acquainted with eclipse and the
CSE labs

� available tomorrow

� review CSE1020

43

CSE1020 Review Questions

44

CSE1020 Review

� what does the following program print?

public class Puzzle01

{

public static void main(String[] args)

{

System.out.print("C" + "S" + "E");

System.out.println('1' + '0' + '3' + '0' + 'z');

}

}

45

CSE1020 Review

� which of the following methods are associated with a
class?

static boolean disjoint(Collection<?> c1, Collection<?> c2)

void setIcon(Icon newIcon)

String toString()

static int round(double a)

static void showMessageDialog(Component parent, Object message)

46

CSE1020 Review

� what is the return type for each of the following
methods?

static boolean disjoint(Collection<?> c1, Collection<?> c2)

void setIcon(Icon newIcon)

String toString()

static int round(double a)

static void showMessageDialog(Component parent, Object message)

47

CSE1020 Review

� how many parameters do each of the following
methods have, and what are their types?

static boolean disjoint(Collection<?> c1, Collection<?> c2)

void setIcon(Icon newIcon)

String toString()

static int round(double a)

PrintStream printf(String format, Object... args)

48

CSE1020 Review

� what is a method precondition

� what is a method postcondition?

� what happens if a precondition is violated?

� who is responsible if a postcondition is false?

49

CSE1020 Review

� a type.lib.Fraction object has two attributes: a
numerator and a denominator

� draw the memory diagram for the following program

� after line 1 completes

� after line 2 completes

import type.lib.Fraction;

public class Fraction1 {

public static void main(String[] args) {

Fraction f = new Fraction(1, 2); // 1

f.add(new Fraction(3, 4)); // 2

}

}

50

CSE1020 Review

� class X is an aggregation of one Y; it has a method
getY that returns a reference to its Y object

� what are the values of sameState and sameObject?

Y y = new Y();

X x = new X(y); // x has a reference to y

boolean sameState = y.equals(x.getY());

boolean sameObject = y == x.getY();

51

CSE1020 Review

� class X is an composition of one Y; it has a method
getY that returns a reference to its Y object

� what are the likely values of sameState and
sameObject?

Y y = new Y();

X x = new X(y); // x uses composition with y

boolean sameState = y.equals(x.getY());

boolean sameObject = y == x.getY();

52

CSE1020 Review

� class X is an composition of one Y; it has a method
getY that returns a reference to its Y object

� furthermore, Y is immutable

� what are the likely values of sameState and
sameObject?

Y y = new Y();

X x = new X(y); // x uses composition with y

boolean sameState = y.equals(x.getY());

boolean sameObject = y == x.getY();

53

CSE1020 Review

� consider the following
UML diagram

� which statements are
true?

1. Object is a CreditCard

2. CreditCard is an Object

3. RewardCard is an Object

4. RewardCard is a
CreditCard

5. a CreditCard is usable
anywhere a RewardCard is
required

6. a RewardCard is usable
anywhere a CreditCard is
required

54

CSE1020 Review

� t is a reference to a List<String> object

� write some code that prints out each element of t

55

CSE1020 Review

� p is a reference to a Map<String, Integer> object

� write some code that prints out each key-value pair of
p

56

CSE1020 Review

� consider the UML diagram for Java exceptions:

� checked exceptions are subclasses of … ?

� unchecked exceptions are subclasses of … ?

57

CSE1020 Review

� consider the UML diagram for some common exceptions:

� will the following code fragment compile?

try { // some legal code not shown here }

catch (IndexOutOfBoundsException e) { // not shown }

catch (StringIndexOutOfBoundsException e) { // not shown }

58

CSE1020 Review

� more questions can be found here:
� http://www.eecs.yorku.ca/course_archive/2011-12/F/1020/practice.shtml

59

Utilities (Part 1)

Implementing static features

60

Goals for Today

� initiate the design of simple class

� learn about class attributes

� public

� static

� final

61

Motivation

62

� the game Yahtzee

� use the link above to see the rules of the game

� why?

� opportunity to solve small computational problems that are
related to much harder problems

http://barefootliam-stock.deviantart.com/art/five-ivory-dice-97476774

Yahtzee Roll Categories

63

� if I gave you a List<Die> containing 5 dice can you
write a Java program that determines if the roll
belongs to a particular category?
� http://www.eecs.yorku.ca/course_archive/2012-13/W/1030/Z/labs/01/doc/

Category Description Example

Three of a kind at least three dice having the same value 6-2-3-2-2

Four of a kind at least four dice having the same value 5-5-5-1-5

Full house three-of-a-kind and a pair 2-3-3-2-3

Small straight at least four sequential dice 3-1-3-4-2

Large straight five sequential dice 5-1-3-4-2

Yahtzee all five dice having the same value 4-4-4-4-4

Yahtzee Roll Categories

64

� there are several different approaches that you can use
to determine if a roll belongs to a particular category

� try to find a few different approaches for each category

� however, starting by sorting the list of dice simplifies
the problem

Sorting a List

65

� you can sort a List<Die> by using the sort method
in the utility class java.util.Collections

// dice is a List<Die> reference

Collections.sort(dice);

Why Does Sorting Help?

� sorting reduces the number of cases that you have to
check; consider the category three-of-a-kind

� after sorting the dice you only have to check if one of three
cases are true

66

X X X

X X X

X X X

case 1

case 2

case 3
don't care

about the

values of the

blank dice

Three-of-a-kind?

// dice is a List<Die> reference

Collections.sort(dice);

boolean isThreeOfAKind =

dice.get(0).getValue() == dice.get(2).getValue() ||

dice.get(1).getValue() == dice.get(3).getValue() ||

dice.get(2).getValue() == dice.get(4).getValue();

67

Sorting in General

68

� sorting seems useful

� what other examples can you think of?

� how would you implement Collections.sort?

� in-class sorting contest here

Sorting Strategies Tried by Students

69

Bad Ways to Sort

70

� bogosort is a very slow algorithm for sorting a list

� bozosort is another very slow algorithm

while the list is not sorted {

randomly shuffle the elements in the list

}

while the list is not sorted {

pick two elements at random and swap them

}

Review: Java Class

71

� a class is a model of a thing or concept

� in Java, a class is the blueprint for creating objects

� fields (or attributes)

� the structure of an object; its components and the information
(data) contained by the object

� methods

� the behaviour of an object; what an object can do

Designing a Class

72

� to decide what fields and methods a class must
provide, you need to understand the problem you are
trying to solve

� the fields and methods you provide (the abstraction you
provide) depends entirely on the requirements of the
problem

Person

appearance
voice

…

draw()
talk()

…

Person

age
photograph

…

compatibleWith(Person)
contact ()

…

video game person dating service person

class name

fields

methods

A Class for Yahtzee

73

� design a class to encapsulate features of Yahtzee

� what fields are needed?

� number of dice

� note: the number of dice never changes; it is genuinely a constant
value for the game called Yahtzee

� attributes that are constant have all uppercase names

Yahtzee

+ NUMBER_OF_DICE: int field type

Version 1

74

public class Yahtzee {

public static final int NUMBER_OF_DICE = 5;

}

Fields

75

� a field is a member that holds data

� a constant field is usually declared by specifying

1. modifiers
1. access modifier public

2. static modifier static

3. final modifier final

2. type int

3. name NUMBER_OF_DICE

4. value 5

public static final int NUMBER_OF_DICE = 5;

Fields

76

� field names must be unique in a class

� the scope of a field is the entire class

� [JBA] and [notes] use the term "field" only for public
fields

public Fields

77

� a public field is visible to all clients

public class NothingToHide {

public int x; // always positive

}

// client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100;

public Fields

78

� public fields break encapsulation

� a NothingToHide object has no control over the value o f x

� a client can put a NothingToHide object into an invalid
state because the client has direct access to a public field

public class NothingToHide {

public int x; // always positive

}

// client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100;

h.x = -5; // not positive

public Fields

79

� a public field makes a class brittle in the face of
change

� public fields are hard to change

� they are part of the class API

� changing access or type will break exisiting client code

public class NothingToHide {

private int x; // always positive

}

// existing client of NothingToHide

NothingToHide h = new NothingToHide();

h.x = 100; // no longer compiles

public Fields

80

� avoid public fields in production code

� except when you want to expose constant value types

static Fields

81

� a field that is static is a per-class member

� only one copy of the field, and the field is associated with
the class

� every object created from a class declaring a static field shares the
same copy of the field

� textbook uses the term static variable

� also commonly called class variable

static Fields

82

Yahtzee y = new Yahtzee();

Yahtzee z = new Yahtzee();

64 client invocation

y

see [JBA 4.3.3] for another example

500 Yahtzee class

NUMBER_OF_DICE 5

1000 Yahtzee object

???

1100 Yahtzee object

???

z

1000

1100

belongs to class

no copy of
NUMBER_OF_DICE

static Field Client Access

83

� a client should access a public static field
without using an object

� use the class name followed by a period followed by the
attribute name

// client of Yahtzee

List<Die> dice = new List<Die>();

for(int i = 0; i < Yahtzee.NUMBER_OF_DICE; i++) {

dice.add(new Die(6));

}

static Attribute Client Access

84

� it is legal, but considered bad form, to access a public
static attribute using an object

// client of Yahtzee; avoid doing this

Yahtzee y = new Yahtzee();

List<Die> dice = new List<Die>();

for(int i = 0; i < y.NUMBER_OF_DICE; i++) {

dice.add(new Die(6));

}

final Fields

85

� an field that is final can only be assigned to once

� public static final attributes are typically assigned
when they are declared

public static final int NUMBER_OF_DICE = 5;

� public static final attributes are intended to be
constant values that are a meaningful part of the
abstraction provided by the class

final Fields of Primitive Types

86

� final fields of primitive types are constant

public class AlsoNothingToHide {

public static final int X = 100;

}

// client of AlsoNothingToHide

AlsoNothingToHide.X = 88; // will not compile;

// attribute is final and

// previously assigned

final Fields of Immutable Types

87

� final fields of immutable types are constant

� also, String is immutable

� it has no methods to change its contents

public class StillNothingToHide {

public static final String X = "peek-a-boo";

}

// client of StillNothingToHide

StillNothingToHide.X = "i-see-you";

// will not compile;

// field is final and

// previously assigned

final Fields of Mutable Types

88

� final fields of mutable types are not logically
constant; their state can be changed

public class ReallyNothingToHide {

public static final Fraction HALF =

new Fraction(1, 2);

}

// client of ReallyNothingToHide

Fraction third = new Fraction(1, 3);

ReallyNothingToHide.HALF = third; // will not compile;

// HALF is final and

// already assigned

ReallyNothingToHide.HALF.setDenominator(3); // works!!

final Fields of Mutable Types

89

ReallyNothingToHide class

final HALF 192 700

:

700 Fraction obj

:

not final! numerator 1

not final! denominator 2

ReallyNothingToHide.HALF.setDenominator(3);

3

final Fields of Mutable Types

90

� final fields of mutable types are not logically
constant; their state can be changed

public class LastNothingToHide {

public static final ArrayList<Integer> X =

new ArrayList<Integer>();

}

// client of LastNothingToHide

ArrayList<Integer> y = new ArrayList<Integer>();

LastNothingToHide.X = y; // will not compile;

// attribute is final and

// previously assigned

LastNothingToHide.X.add(10000);

// works!

final Attributes

91

� avoid using mutable types as public constants

� they are not logically constant

Puzzle

92

� what does the following program print?

public class What

{

public static void main(String[] args)

{

final long

MICROS_PER_DAY = 24 * 60 * 60 * 1000 * 1000;

final long

MILLIS_PER_DAY = 24 * 60 * 60 * 1000;

System.out.println(MICROS_PER_DAY / MILLIS_PER_DAY);

}

}

