
12/3/2013 CSE 2001, Fall 2013 28

Proving Undecidability (1)
Recall the language
ATM = { <M,w> | M is a TM that accepts w }.

Proof that ATM is not TM-decidable (Thm. 4.11)
(Contradiction) Assume that TM G decides ATM:





=
waccept not  does M if reject""

w accepts M if accept""
w,MG

From G we construct a new TM D that will get
us into trouble…
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Proving Undecidability (2)
The TM D works as follows on input  <M> (a TM):
1) Run G on <M,<M>>
2) Disagree with the answer of G
(The TM D always halts because G always halts.)







=
MM, accepts G if reject""

MM, rejects G if accept""
MDIn short:







=
Maccept  does M if reject""

Maccept not  does M if accept""
MDHence:

Now run D on <D> (“on itself”)…
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Proving Undecidability (3)







=
Daccept  does D if reject""

Daccept not  does D if accept""
DDResult:

This does not make sense: D only accepts
if it rejects, and vice versa. 
(Note again that D always halts.)

Contradiction: ATM is not TM-decidable.

This proof used diagonalization implicitly…
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Review of Proof (1)
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‘Acceptance behavior’ of Mi on <Mj>
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Review of Proof (2)
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‘Deciding behavior’ of G on <Mi,<Mj>>
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Review of Proof (3)
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Disagreeing D has to occur in list as well…
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Review of Proof (4)
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Contradiction for D on input <D>.
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Another View of the Problem

The “Self-referential paradox” occurs when we
force the TM D to disagree with itself.

On the one hand, D knows what it is going to
do on input <D>, but then it decides to do 
something else instead.

“You cannot know for sure what you will do in 
the future, because then you could decide to 
change your actions and create a paradox.”
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Self-Reference in Math
The diagonalization method implements the self-
reference paradox in a mathematical way.

In logic this approach is often used to prove that 
certain things are impossible.

Kurt Gödel gave a mathematical equivalent of
“This sentence is not true.”

Old puzzle: In a town, there is a barber who shaves
all those who do not shave themselves. 
Who shaves the barber ?
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Self-Reference in CSE

What happens if a computer program M tries to
answer questions about itself <M>?

Sometimes this is perfectly okay:
- How big is <M>?
- Is <M> a proper TM?

Other questions lead to paradoxes:
- Does <M> halt or not?
- Is there a smaller program M’ that is equivalent? 
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TM-Unrecognizable

ATM is not TM-decidable, but it is TM-recognizable.
What about a language that is not recognizable?

Theorem 4.22: If a language A is recognizable 
and its complement Ā is recognizable, then A
is Turing machine decidable.

Proof: Run the recognizing TMs for A and Ā in
parallel on input x. Wait for one of the TMs to 
accept. If the TM for A accepted: “accept x”;
if the TM for Ā accepted: “reject x”.
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ĀTM is not TM-Recognizable
By the previous theorem it follows that ĀTM cannot
be TM-recognizable, because this would imply
that ATM is TM decidable (Corollary 4.23).

co-TM recognizable

We call languages like ĀTM co-TM recognizable.

TM-recognizable

TM decidable
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Things that TMs Cannot Do:

EQTM = { <G,H> | G and H are TMs 
with L(G)=L(H) }

ETM = { <G> | G is a TM with L(G)=∅ }

The following languages are also unrecognizable:

To be precise:
• ETM is co-TM recognizable
• EQTM is not even co-Turing recognizable

How can we prove these facts?
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Next: reducibility
• We still need to prove that the Halting 

problem is undecidable.
• Do more examples of undecidable 

problems.
• Try to get a general technique for 

proving undecidability.
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Halting problem
• Assume that it is decidable. So there is a 

TM S that decides 
HALT={<M,w>|M is a TM and M halts on w}
• Use S as a subroutine to get a TM S to 

decide 
ATM = {<M,w> | M is a TM that accepts w }
• Therefore ATM is decidable. CONTRADICTION!
• Details follow ….
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Halting problem - 2
S = “On input <M,w>
• Run TM R on input <M,w>.
• If R rejects, REJECT.
• If R accepts, simulate M on w until it halts.
• If M has accepted, ACCEPT, else REJECT”
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More undecidability
ETM = {<M>| M is a TM and L(M) = φ} 
We mentioned that ETM is co-TM recognizable.
We will prove next that ETM is undecidable.

Intuition: You cannot solve this problem UNLESS 
you solve the halting problem!!

But this is hard to formalize, so we use ATM. 
Instead.
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ETM is undecidable
Assume R decides ETM. Use R to design TM S to decide ATM. 

• Given a TM M and input w, define a new TM M’: 
– If x≠w, reject
– If x=w, accept iff M accepts w

S = “On input <M,w>
• Construct M’ as above.
• Run TM R on input <M’>.
• If R accepts, REJECT; If R rejects, ACCEPT.”
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EQTM is undecidable
If this is decidable, then we can solve ETM!! (You 

need to check equality with TM M1 that rejects all 
inputs) 

Assume R decides EQTM. Use R to design TM S to 
decide ETM.

S = “On input <M>
• Run TM R on input <M, M1>.
• If R accepts, ACCEPT; If R rejects, REJECT.”
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The running idea

All our proofs had a common structure
• The first undecidable proof was hard –

used diagonalization/self-reference.
• For the rest, we assumed decidable and 

used it as a subroutine to design TM’s 
that decide known undecidable problems.

• Can we make this technique more 
structured?
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Mapping Reducibility
Thus far, we used reductions informally:
If “knowing how to solve A” implied “knowing how 
to solve B”, then we had a reduction from B to A.

Sometimes we had to negate the answer to the
“∈A?” question, sometimes not.  In general, it 
was unspecified which transformations were
allowed around the “∈A?”-part of the reduction.

Let us make this formal…
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Computable Functions

A function f:Σ*→Σ* is a TM-computable function
if there is a Turing machine that on every input
w∈Σ* halts with just f(w) on the tape.

All the usual computations (addition, multiplication,
sorting, minimization, etc.) are all TM-computable.

Note: alterations to TMs, like “given a TM M, we 
can make an M’ such that…” can also be described 
by computable functions that satisfy f(<M>) = <M’>. 


