
12/3/2013 CSE 2001, Fall 2013 28

Proving Undecidability (1)
Recall the language
ATM = { <M,w> | M is a TM that accepts w }.

Proof that ATM is not TM-decidable (Thm. 4.11)
(Contradiction) Assume that TM G decides ATM:





=
waccept not does M if reject""

w accepts M if accept""
w,MG

From G we construct a new TM D that will get
us into trouble…

12/3/2013 CSE 2001, Fall 2013 29

Proving Undecidability (2)
The TM D works as follows on input <M> (a TM):
1) Run G on <M,<M>>
2) Disagree with the answer of G
(The TM D always halts because G always halts.)







=
MM, accepts G if reject""

MM, rejects G if accept""
MDIn short:







=
Maccept does M if reject""

Maccept not does M if accept""
MDHence:

Now run D on <D> (“on itself”)…

12/3/2013 CSE 2001, Fall 2013 30

Proving Undecidability (3)







=
Daccept does D if reject""

Daccept not does D if accept""
DDResult:

This does not make sense: D only accepts
if it rejects, and vice versa.
(Note again that D always halts.)

Contradiction: ATM is not TM-decidable.

This proof used diagonalization implicitly…

12/3/2013 CSE 2001, Fall 2013 31

Review of Proof (1)

acceptacceptM
M

acceptacceptacceptacceptM
acceptacceptM

MMMM

4

3

2

1

4321

‘Acceptance behavior’ of Mi on <Mj>

12/3/2013 CSE 2001, Fall 2013 32

Review of Proof (2)

rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

MMMM

4

3

2

1

4321

‘Deciding behavior’ of G on <Mi,<Mj>>

12/3/2013 CSE 2001, Fall 2013 33

Review of Proof (3)

acceptacceptrejectrejectD

rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

DMMMM

4

3

2

1

4321

Disagreeing D has to occur in list as well…

12/3/2013 CSE 2001, Fall 2013 34

Review of Proof (4)

?acceptacceptrejectrejectD

rejectrejectacceptacceptM
rejectrejectrejectrejectM
acceptacceptacceptacceptM
rejectacceptrejectacceptM

DMMMM

4

3

2

1

4321

Contradiction for D on input <D>.

12/3/2013 CSE 2001, Fall 2013 35

Another View of the Problem

The “Self-referential paradox” occurs when we
force the TM D to disagree with itself.

On the one hand, D knows what it is going to
do on input <D>, but then it decides to do
something else instead.

“You cannot know for sure what you will do in
the future, because then you could decide to
change your actions and create a paradox.”

12/3/2013 CSE 2001, Fall 2013 36

Self-Reference in Math
The diagonalization method implements the self-
reference paradox in a mathematical way.

In logic this approach is often used to prove that
certain things are impossible.

Kurt Gödel gave a mathematical equivalent of
“This sentence is not true.”

Old puzzle: In a town, there is a barber who shaves
all those who do not shave themselves.
Who shaves the barber ?

12/3/2013 CSE 2001, Fall 2013 37

Self-Reference in CSE

What happens if a computer program M tries to
answer questions about itself <M>?

Sometimes this is perfectly okay:
- How big is <M>?
- Is <M> a proper TM?

Other questions lead to paradoxes:
- Does <M> halt or not?
- Is there a smaller program M’ that is equivalent?

12/3/2013 CSE 2001, Fall 2013 38

TM-Unrecognizable

ATM is not TM-decidable, but it is TM-recognizable.
What about a language that is not recognizable?

Theorem 4.22: If a language A is recognizable
and its complement Ā is recognizable, then A
is Turing machine decidable.

Proof: Run the recognizing TMs for A and Ā in
parallel on input x. Wait for one of the TMs to
accept. If the TM for A accepted: “accept x”;
if the TM for Ā accepted: “reject x”.

12/3/2013 CSE 2001, Fall 2013 39

ĀTM is not TM-Recognizable
By the previous theorem it follows that ĀTM cannot
be TM-recognizable, because this would imply
that ATM is TM decidable (Corollary 4.23).

co-TM recognizable

We call languages like ĀTM co-TM recognizable.

TM-recognizable

TM decidable

12/3/2013 CSE 2001, Fall 2013 40

Things that TMs Cannot Do:

EQTM = { <G,H> | G and H are TMs
with L(G)=L(H) }

ETM = { <G> | G is a TM with L(G)=∅ }

The following languages are also unrecognizable:

To be precise:
• ETM is co-TM recognizable
• EQTM is not even co-Turing recognizable

How can we prove these facts?

12/3/2013 CSE 2001, Fall 2013 41

Next: reducibility
• We still need to prove that the Halting

problem is undecidable.
• Do more examples of undecidable

problems.
• Try to get a general technique for

proving undecidability.

12/3/2013 CSE 2001, Fall 2013 42

Halting problem
• Assume that it is decidable. So there is a

TM S that decides
HALT={<M,w>|M is a TM and M halts on w}
• Use S as a subroutine to get a TM S to

decide
ATM = {<M,w> | M is a TM that accepts w }
• Therefore ATM is decidable. CONTRADICTION!
• Details follow ….

12/3/2013 CSE 2001, Fall 2013 43

Halting problem - 2
S = “On input <M,w>
• Run TM R on input <M,w>.
• If R rejects, REJECT.
• If R accepts, simulate M on w until it halts.
• If M has accepted, ACCEPT, else REJECT”

12/3/2013 CSE 2001, Fall 2013 44

More undecidability
ETM = {<M>| M is a TM and L(M) = φ}
We mentioned that ETM is co-TM recognizable.
We will prove next that ETM is undecidable.

Intuition: You cannot solve this problem UNLESS
you solve the halting problem!!

But this is hard to formalize, so we use ATM.
Instead.

12/3/2013 CSE 2001, Fall 2013 45

ETM is undecidable
Assume R decides ETM. Use R to design TM S to decide ATM.

• Given a TM M and input w, define a new TM M’:
– If x≠w, reject
– If x=w, accept iff M accepts w

S = “On input <M,w>
• Construct M’ as above.
• Run TM R on input <M’>.
• If R accepts, REJECT; If R rejects, ACCEPT.”

12/3/2013 CSE 2001, Fall 2013 46

EQTM is undecidable
If this is decidable, then we can solve ETM!! (You

need to check equality with TM M1 that rejects all
inputs)

Assume R decides EQTM. Use R to design TM S to
decide ETM.

S = “On input <M>
• Run TM R on input <M, M1>.
• If R accepts, ACCEPT; If R rejects, REJECT.”

12/3/2013 CSE 2001, Fall 2013 47

The running idea

All our proofs had a common structure
• The first undecidable proof was hard –

used diagonalization/self-reference.
• For the rest, we assumed decidable and

used it as a subroutine to design TM’s
that decide known undecidable problems.

• Can we make this technique more
structured?

12/3/2013 CSE 2001, Fall 2013 48

Mapping Reducibility
Thus far, we used reductions informally:
If “knowing how to solve A” implied “knowing how
to solve B”, then we had a reduction from B to A.

Sometimes we had to negate the answer to the
“∈A?” question, sometimes not. In general, it
was unspecified which transformations were
allowed around the “∈A?”-part of the reduction.

Let us make this formal…

12/3/2013 CSE 2001, Fall 2013 49

Computable Functions

A function f:Σ*→Σ* is a TM-computable function
if there is a Turing machine that on every input
w∈Σ* halts with just f(w) on the tape.

All the usual computations (addition, multiplication,
sorting, minimization, etc.) are all TM-computable.

Note: alterations to TMs, like “given a TM M, we
can make an M’ such that…” can also be described
by computable functions that satisfy f(<M>) = <M’>.

