#### CSE 2001: Introduction to Theory of Computation Fall 2013

#### **Suprakash Datta**

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875 Course page: http://www.cse.yorku.ca/course/2001

Some of these slides are adapted from Wim van Dam's slides (<u>www.cs.berkeley.edu/~vandam/CS172/</u> retrieved earlier)

11/26/2013

### Next

**Towards undecidability:** 

- The Halting Problem
- Countable and uncountable infinities
- Diagonalization arguments

# **The Halting Problem**

The existence of the universal TM U shows that  $A_{TM} = \{<M,w> \mid M \text{ is a TM that accepts } w \}$  is TM-recognizable, but can we also *decide* it?

The problem lies with the cases when M does not halt on w. In short: <u>the halting problem</u>.

We will see that this is an insurmountable problem: in general one cannot decide if a TM will halt on w or not, hence  $A_{TM}$  is undecidable.

# **Counting arguments**

- We need tools to reason about undecidability.
- The basic argument is that there are more languages than Turing machines and so there are languages than Turing machines. Thus some languages cannot be decidable

# **Baby steps**

- What is counting?
  - Labeling with integers
  - Correspondence with integers
- Let us review basic properties of functions

### **Mappings and Functions**

The function  $F:A \rightarrow B$ maps one set A to another set B:



F is <u>one-to-one</u> (injective) if every  $x \in A$  has a unique image F(x): If F(x)=F(y) then x=y.

F is <u>onto</u> (surjective) if every  $z \in B$  is 'hit' by F: If  $z \in B$  then there is an  $x \in A$  such that F(x)=z.

F is a <u>correspondence</u> (bijection) between A and B if it is both one-to-one and onto.

11/26/2013

# Cardinality

A set S has k elements if and only if there exists a bijection between S and {1,2,...,k}.

S and {1,...,k} have the same <u>cardinality</u>.

If there is a surjection possible from  $\{1,...,n\}$  to S, then  $n \ge |S|$ .

We can generalize this way of comparing the sizes of sets to infinite ones.

# **How Many Languages?**

For  $\Sigma = \{0,1\}$ , there are  $2^k$  words of length k. Hence, there are  $2^{(2^k)}$  languages  $L \subseteq \Sigma^k$ .



**Proof**: L has two options for every word  $\in \Sigma^k$ ; L can be represented by a string  $\in \{0,1\}^{(2^k)}$ .

That's a lot, but finite.

There are infinitely many languages  $\subseteq \Sigma^*$ . But we can say more than that...

Georg Cantor defined a way of comparing infinities. 11/26/2013 CSE 2001, Fall 2013 8

# **Countably Infinite Sets**

A set S is <u>infinite</u> if there exists a surjective function  $F:S \rightarrow N$ .

"The set N has no more elements than S."

A set S is <u>countable</u> if there exists a surjective function F:  $N \rightarrow S$ "The set S has not more elements than ."

A set S is <u>countably infinite</u> if there exists a bijective function F:  $N \rightarrow S$ . "The sets N and S are of equal size."

# **Counterintuitive facts**

- Cardinality of even integers
  - Bijection i  $\leftrightarrow$  2i
  - A proper subset of N has the same cardinality as N !
  - Same holds for odd integers
- What about pairs of natural numbers?

- Bijection from N to N x N !!

- Cantor's idea: count by diagonals
- Implies set of rational numbers is countable

# **Counterintuitive facts - 2**

- Note that the ordering of Q is not in increasing order or decreasing order of value.
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order.
- So cannot use ideas like "between any two real numbers x, y, there exists a real number 0.5(x+y)" to prove uncountability.

### More Countably Infinite Sets

One can make bijections between N and  $\mathcal{1}. \{a\}^*: i \leftrightarrow a^i$ 2. Integers (Z): 1 2 3 4 5 6 7 8 9 10 11 0 +1 -1 +2 -2 +3 -3 +4 -4 +5 -5

### **Countable sets in language theory**

- Σ\* is countable finitely many strings of length k. Order them lexicographically.
- Set of all Turing machines countable every TM can be encoded as a string over some  $\Sigma$ .

## Summary

A set S is <u>countably infinite</u> if there exists a bijection between  $\{0, 1, 2, ...\}$  and S.

Intuitively: A set S is countable, if you can make a List (numbering)  $s_1, s_2, ...$  of all the elements of S.

The sets Q, {0,1}\* are countably infinite.

Example for  $\{0,1\}^*$ : the lexicographical ordering:  $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,...\}$ 

Q: Are there bigger sets? 11/26/2013 CSE 2001, Fall 2013

### Next

#### •Chapter 4.2:

- Uncountable Set of Languages
- Unrecognizable Languages
- Halting Problem is Undecidable
- Non-Halting is not TM-Recognizable

### **Uncountable Sets**

There are infinite sets that are not countable. Typical examples are R, P (N) and P ({0,1}\*)

We prove this by a <u>diagonalization argument</u>. In short, if S is countable, then you can make a list  $s_1, s_2, ...$  of all elements of S.

Diagonalization shows that given such a list, there will always be an element x of S that does not occur in  $s_1, s_2, ...$ 

# Uncountability of P (N)

The set P(N) contains all the subsets of  $\{1,2,...\}$ . Each subset  $X \subseteq N$  can be identified by an infinite string of bits  $x_1x_2...$  such that  $x_j=1$  iff  $j \in X$ .

There is a bijection between P (N) and  $\{0,1\}^{N}$ .

**Proof by contradiction**: Assume P (N) countable. Hence there must exist a surjection F from N to the set of infinite bit strings. "There is a list of *all* infinite bit strings."

11/26/2013

## Diagonalization

Try to list all possible infinite bit strings:



Look at the bit string on the diagonal of this table: 0101... The negation of this string ("1010...") does not appear in the table.

11/26/2013

# No Surjection $\mathbb{N} \rightarrow \{0,1\}^{\mathbb{N}}$

Let F be a function  $N \rightarrow \{0,1\}^N$ . F(1),F(2),... are all infinite bit strings.

Define the infinite string  $Y=Y_1Y_2...$  by  $Y_j = NOT(j-th \ bit \ of \ F(j))$ 

On the one hand  $Y \in \{0,1\}^N$ , but on the other hand: for every  $j \in N$  we know that  $F(j) \neq Y$  because F(j) and Y differ in the j-th bit.

F cannot be a surjection: {0,1}<sup>N</sup> is uncountable.

### Generalization

- We proved that  $P(\{0,1\}^*)$  is uncountably infinite.
- Can be generalized to  $P(\Sigma^*)$  for any finite  $\Sigma$ .

# R is uncountable

- Similar diagonalization proof. We will prove [0,1) uncountable
- Let F be a function N → R
  F(1),F(2),... are all infinite digit strings (padded with zeroes if required).
- Define the infinite string of digits  $Y=Y_1Y_2...$  by  $Y_j = F(i)_i + 1$  if  $F(i)_i < 8$ 7 if  $F(i)_i \ge 8$

#### Q: Where does this proof fail on N?

# **Other infinities**

- We proved 2<sup>N</sup> uncountable. We can show that this set has the same cardinality as *P* (*N*) and R.
- What if we take P(R)?
- Can we build bigger and bigger infinities this way?
- Euler: Continuum hypothesis YES!

## Uncountability

We just showed that there it is impossible to have a surjection from N to the set  $\{0,1\}^N$ .

What does this have to do with Turing machine computability?

11/26/2013

# **Counting TMs**

<u>Observation</u>: Every TM has a finite description; there is only a countable number of different TMs. (A description  $\langle M \rangle$  can consist of a finite string of bits, and the set {0,1}\* is countable.)

Our definition of Turing recognizable languages is a mapping between the set of TMs  $\{M_1, M_2, ...\}$ and the set of languages  $\{L(M_1), L(M_2), ...\} \subseteq P(\Sigma^*)$ .

Question: How many languages are there?

# **Counting Languages**

There are uncountably many different languages over the alphabet  $\Sigma = \{0,1\}$  (the languages  $L \subseteq \{0,1\}^*$ ). With the lexicographical ordering  $\varepsilon$ ,0,1,00,01,... of  $\Sigma^*$ , every L coincides with an infinite bit string via its characteristic sequence  $\chi_L$ .

Example for L={0,00,01,000,001,...} with  $\chi_L$ = 0101100...

| $\sum_{i=1}^{\infty}$ | 3 | 0 | 1 | 00 | 01 | 10 | _11 | 000 | 001 | _010 | •••• |
|-----------------------|---|---|---|----|----|----|-----|-----|-----|------|------|
| L                     |   | Х |   | Х  | Х  |    |     | Х   | Х   | Х    | •••  |
| χ <sub>L</sub>        | 0 | 1 | 0 | 1  | 1  | 0  | 0   | 1   | 1   | 1    | •••  |

# **Counting TMs and Languages**

There is a bijection between the set of languages over the alphabet  $\Sigma = \{0,1\}$  and the uncountable set of infinite bit strings  $\{0,1\}^N$ .

- ➤ There are uncountable many different languages L<sub>⊆</sub>{0,1}\*.
- Hence there is no surjection possible from the countable set of TMs to the set of languages. Specifically, the mapping L(M) is not surjective.

<u>Conclusion</u>: There are languages that are not Turing-recognizable. (A lot of them.)

11/26/2013

# Is This Really Interesting?

We now know that there are languages that are not Turing recognizable, but we do not know what kind of languages are non-TMrecognizable.

Are there interesting languages for which we can prove that there is no Turing machine that recognizes it?