CSE 2001:

Introduction to Theory of Computation
Fall 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

11/21/2013 CSE 2001, Fall 2013 1

Chapter 4: Decidability

We are now ready to tackle the question:

What can computers do and what not?

We do this by considering the question:

Which languages are TM-decidable, Turing-
recognizable, or neither?

Assuming the Church-Turing thesis, these are
fundamental properties of the languages.

11/21/2013 CSE 2001, Fall 2013 2

Describing TM Programs

Three Levels of Describing algorithms:
 formal (state diagrams, CFGs, et cetera)
* implementation (pseudo-Pascal)

* high-level (coherent and clear English)

Describing input/output format:

TMs allow only strings €X* as input/output.

If our X and Y are of another form (graph, Turing
machine, polynomial), then we use <X,Y> to
denote ‘some kind of encoding €X*'.

11/21/2013 CSE 2001, Fall 2013 3

Deciding Regular Languages

The acceptance problem for deterministic
finite automata is defined by:
Apea = { <B,w> | B is a DFA that accepts w }

Note that this language deals with all possible
DFAs and inputs w, not a specific instance.

Of course, Apra is @ TM-decidable language.

11/21/2013 CSE 2001, Fall 2013

Ape, I1s Decidable (Thm. 4.1)

Proof: Let the input <B,w> be a DFA with
B=(Q, %, 3, Qg F) and weX*.

The TM performs the following steps:

1) Check if B and w are ‘proper’, if not: “reject”

2) Simulate B on w with the help of two pointers:
P, € Q for the internal state of the DFA, and
P, € {0,1,...,|w]|} for the position on the string.
While we increase P,, from O to |w|, we
change P, according to the input letter wp,,
and the transition function value (P ,wp,,).

3) If M accepts w: “accept’; otherwise “reject”

11/21/2013 CSE 2001, Fall 2013

Deciding NFA

The acceptance problem for nondeterministic FA
Anea = { <B,w> | B is an NFA that accepts w }
Is a TM decidable language.

Proof: Let the input <B,w> be an NFA with

B=(Q, %, 3, Qg F) @and weX*.

Use our earlier results on finite automata

to transform the NFA B into an equivalent DFA C.
(See Theorem 1.19 how to do this automatically.)
Use the TM of the previous result on <C,w>.

This can all be done with one big, combined TM.

11/21/2013 CSE 2001, Fall 2013 6

Regular Expressions

The acceptance problem

Arex = { <R,w> | R is a regular expression
that can generate w }

IS a Turing-decidable language.

Proof Theorem 4.3. On input <R,w>:

1. Check if R is a proper regular expression
and w a proper string

2. Convert Rintoa DFA B

3. Run earlier TM for Agg, on <B,w>

11/21/2013 CSE 2001, Fall 2013

Emptiness Testing (Thm. 4.4)

Another problem relating to DFAs is the
emptiness problem:
Epea = {<A>| Alis a DFA with L(A) = O }

How can we decide this language? This language
concerns the behavior of the DFA A on all possible
strings.

Less obvious than the previous examples.
|dea: check if an accept state of A is reachable
from the start state of A.

11/21/2013 CSE 2001, Fall 2013 8

Proof for DFA-Emptiness

Algorithm for Ege, on input A=(Q,Z%,0,q¢.1:F):

1) If A is not proper DFA: “reject”

2) Mark the start state of A g4

3) Repeat until no new states are marked:
a) Mark any states that can be 6-reached from

any marked state that is already marked

4) If no accept state is marked, “accept’; else

“reject”

11/21/2013 CSE 2001, Fall 2013 9

DFA-Equivalence (Thm. 4.5)

A problem that deals with two DFAs:
EQprp = {<A,B>| L(A) = L(B) }

Theorem 4.5: EQpe, Is TM-decidable.

Proof. Look at the symmetric difference between
the two languages: (L(A) nL(B)) U (L(A) nL(B))
Note: “L(A)=L(B)" is equivalent with an empty
symmetric difference between L(A) and L(B).
This difference is expressed by standard DFA
transformations: union, intersection, complement.

11/21/2013 CSE 2001, Fall 2013 10

Proof of Theorem 4.5 (cont.)

Algorithm on given <A,B>:

1) If A or B are not proper DFA: “reject”

2) Construct a third DFA C that accepts the
language (L(A) ~L(B))u (L(A) ~L(B))
(with standard ‘Chapter 1’ transformations).

3) Decide with the TM of the previous
theorem
whether or not CeEyp,

4) If CeEge, then "accept’;

If CezEyea then “reject”

11/21/2013 CSE 2001, Fall 2013 11

Context-Free language problems

Similar languages for context-free grammars:

Acrg = { <G,w> | Gis a CFG that generates w }

Ecrg = { <G> | Gis a CFG with L(G)=Y }

EQceg = { <G,H>| G and H are CFGs with
L(G)=L(R) }

The problem with CFGs and PDAs is that they
are inherently non-deterministic.

11/21/2013 CSE 2001, Fall 2013 12

Recall “Chomsky NF”

A context-free grammar G = (V,X,R,S) is in

Chomsky normal form if every rule is of the form
A — BC or A — X

with variables AV and B,CeV \{S}, and xeX

For the start variable S we also allow “S — ¢”

Chomsky NF grammars are easier to analyze.

The derivation S =* w requires 2|w|-1 steps
(apart from S = ¢).

11/21/2013 CSE 2001, Fall 2013 13

Deciding CFGs (1)

Theorem 4.6: The language
Aceg = {<G,w> | G is a CFG that generates w }
Is TM-decidable.

Proof: Perform the following algorithm:
1) Check it G and w are proper, if not “reject”
2) Rewrite G to G’ in Chomsky normal form
) Take care of w=¢ case via S—¢ check for G’
) List all G" derivations of length 2|w|-1
) Check if w occurs in this list;

if so “accept”; if not “reject”

11/21/2013 CSE 2001, Fall 2013 14

Deciding CFGs (2)

Theorem 4.7: The language
Eceg = { <G> | Gis a CFG with L(G)=J }
Is TM-decidable.

Proof: Perform the following algorithm:
1) Check if G is proper, if not “reject”
2) Let G=(V,2,R,S), define set T=X
3) Repeat |V| times:
* Check all rules B—>X,... X, InR
« IfBegTand X,...X,eTkthenadd Bto T
4) If SeT then “reject”, otherwise “accept”

11/21/2013 CSE 2001, Fall 2013

15

Equality of CFGs

What about the equality language

EQceg = {<G,H>| G and H are CFGs
with L(G)=L(H) }?

For DFAs we could use the emptiness decision
procedure to solve the equality problem.

For CFGs this is not possible... (why?)
.. because CFGs are not closed under
complementation or intersection.

Later we will see that EQgg is not TM-decidable.

11/21/2013 CSE 2001, Fall 2013 16

Deciding Languages
We now know that the languages:

Aprp = { <B,w> | B is a DFA that accepts w }

Acrg = { <G,w> | Gis a CFG that generates w }
are TM decidable.

What about the obvious next candidate
Ay = {<M,w> | M is a TM that accepts w }?

Is one TM capable of simulating all other TMs?

11/21/2013 CSE 2001, Fall 2013 17

Does there exist a Universal TM?

Given a description <M,w> of a TM M and input w,
can we simulate M on w?

We can do so via a universal TM U (2-tape):

1) Check if M is a proper TM
Let M = (Qaz,FvSaqO’qacceptvqreject)

2) Write down the starting configuration
< (oW > on the second tape

3) Repeat until halting configuration is reached:
* Replace configuration on tape 2 by next

configuration according to 6
4) "Accept’ if Q ccept IS reached; “reject” if qpgieq

11/21/2013 CSE 2001, Fall 2013 18

Next

Towards undecidability:
* The Halting Problem
* Countable and uncountable infinities

* Diagonalization arguments

11/21/2013 CSE 2001, Fall 2013

19

