
11/7/2013 CSE 2001, Fall 2013 1

CSE 2001:
Introduction to Theory of Computation

Fall 2013

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

11/7/2013 CSE 2001, Fall 2013 2

What do we really know?
Can we always decide if a language L is regular/
context-free or not?

We know:
{ 1x | x = 0 mod 7 } is regular
{ 1x | x is prime } is not regular

But what about
{ 1x | x and x+2 are prime}?

This is (yet) unknown.

11/7/2013 CSE 2001, Fall 2013 3

Describing a Language
The problem lies in the informal notion of
a description.
Consider:
{ n | ∃a,b,c: an+bn = cn }

{ x | in year x the first female US president was
elected}

{ x | x is “an easy to remember number” }

We have to define what we mean by “description”
and “method of deciding”.

11/7/2013 CSE 2001, Fall 2013 4

Next
•Computability (Ch 3)

• Turing machines

• TM-computable/recognizable languages

• Variants of TMs

11/7/2013 CSE 2001, Fall 2013 5

Turing Machines
After Alan M. Turing (1912–1954)

In 1936, Turing introduced his
abstract model for computation in
his article “On Computable Numbers, with an
application to the Entscheidungsproblem”.

At the same time, Alonzo Church published
similar ideas and results.
However, the Turing model has become the
standard model in theoretical computer science.

11/7/2013 CSE 2001, Fall 2013 6

Informal Description TM

Depending on its state and the letter xi, the TM
- writes down a letter,
- moves its read/write head left or right, and
- jumps to a new state.

internal
state set Q

RL

Λ__1#0_1101 At every step,
the head of the
TM M reads a
letter xi from the
one-way infinite
tape.

11/7/2013 CSE 2001, Fall 2013 7

Input Convention

state q0

ΛΛ ___www n21

Initially, the tape contains the input
w∈Σ*, padded with blanks “_”,
and the TM is in start state q0.

During the computation, the head moves left
and right (but not beyond the leftmost point),
the internal state of the machine changes,
and the content of the tape is rewritten.

11/7/2013 CSE 2001, Fall 2013 8

Output Convention

The computation can proceed indefinitely, or the
machines reaches one of the two halting states:

state qaccept

ΛΛ _vvv m21

state qreject

ΛΛ _vvv m21

or

11/7/2013 CSE 2001, Fall 2013 9

Major differences with FA, PDA
• Input can be read more than once
• Scratch memory available, can be

accessed without restrictions
• The “running time” is not predictable

from the input – the machine can
“churn” for a long time even on a short
input

• So we need a clear indicator of end of
computation

11/7/2013 CSE 2001, Fall 2013 10

Turing Machine (Def. 3.3)
A Turing machine M is defined by a
7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), with
• Q finite set of states
• Σ finite input alphabet (without “_”)
• Γ finite tape alphabet with { _ } ∪ Σ ⊆ Γ
• q0 start state ∈ Q
• qaccept accept state ∈ Q
• qreject reject state ∈ Q
• δ the transition function

δ: Q × Γ → Q × Γ × {L,R}

Why do you
need these?

11/7/2013 CSE 2001, Fall 2013 11

Configuration of a TM
The configuration of a Turing machine consists of
• the current state q∈ Q
• the current tape contents ∈ Γ*
• the current head location ∈ {0,1,2,…}

This can be expressed as an element of Γ*×Q×Γ*:

Λ__1#0_1101

q9
becomes “101 q9 1_0#1”

11/7/2013 CSE 2001, Fall 2013 12

An Elementary TM Step
Let u,v∈ Γ* ; a,b,c∈ Γ ; qi,qj∈Q, and M a TM
with transition function δ.
We say that the configuration “ua qi bv” yields the
configuration “uac qj v” if and only if:
δ(qi,b) = (qj,c,R).

Similarly, “ua qi bv” yields “u qj acv” if and only if
δ(qi,b) = (qj,c,L).

11/7/2013 CSE 2001, Fall 2013 13

Terminology

starting configuration on input w: “q0w”

accepting configuration: “uqacceptv”

rejecting configuration: “uqrejectv”

The accepting and rejecting configurations are
the halting configurations.

11/7/2013 CSE 2001, Fall 2013 14

Accepting TMs
A Turing machine M accepts input w∈Σ*
if and only if there is a finite sequence of
configurations C1,C2,…,Ck with

• C1 the starting configuration “q0w”
• for all i=1,…,k–1 Ci yields Ci+1 (following M’s δ)
• Ck is an accepting configuration “uqacceptv”

The language that consists of all inputs that are
accepted by M is denoted by L(M).

11/7/2013 CSE 2001, Fall 2013 15

Turing Recognizable (Def. 3.5)
A language L is Turing-recognizable if and only
if there is a TM M such that L=L(M).

Note: On an input w∉L, the machine M can
halt in a rejecting state, or it can ‘loop’ indefinitely.

How do you distinguish between a very long
computation and one that will never halt?

Also called: a recursively enumerable language.

11/7/2013 CSE 2001, Fall 2013 16

Turing Decidable (Def. 3.6)

Also called: a recursive language.

A language L=L(M) is decided by the TM M if on
every w, the TM finishes in a halting configuration.
(That is: qaccept for w∈L and qreject for all w∉L.)

A language L is Turing-decidable if and only
if there is a TM M that decides L.

11/7/2013 CSE 2001, Fall 2013 17

Example 3.7: A = { 0j | j=2n }
Approach: If j=0 then “reject”; If j=1 then “accept”;
if j is even then divide by two; if j is odd and >1
then “reject”. Repeat if necessary.

1. Sweep left to right crossing off every other zero.
1. If the tape has a single 0, accept.
2. Else If there are an odd number of zeros

reject.
2. Return the head to the left-hand end of the tape.
3. goto 1

11/7/2013 CSE 2001, Fall 2013 18

State diagrams of TMs
Like with PDA, we can represent Turing machines
by (elaborate) diagrams.

See Figures 3.8 and 3.10 for two examples.

If transition rule says: δ(qi,b) = (qj,c,R),
then:

qi qj
b → c,R

11/7/2013 CSE 2001, Fall 2013 19

When Describing TMs
It is assumed that you are familiar with TMs and
with programming computers.

Clarity above all: high level description of TMs
is allowed but should not be used as a trick to
hide the important details of the program.

Standard tools: Expanding the alphabet with
separator “#”, and underlined symbols 0, a,
to indicate ‘activity’. Typical: Γ = { 0,1,#,_,0,1 }

11/7/2013 CSE 2001, Fall 2013 20

Some more examples
• B={w#w| w ∈ (0,1)* } (Pg 172)

• C = {ai bj ck | i*j=k, i,j,k >= 1} (Pg 174)

11/7/2013 CSE 2001, Fall 2013 21

Turing machine variants
• Multiple tapes
• 2-way infinite tapes
• Non-deterministic TMs

11/7/2013 CSE 2001, Fall 2013 22

Multitape Turing Machines

A k-tape Turing machine M has k different
tapes and read/write heads. It is thus defined
by the 7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), with
• Q finite set of states
• Σ finite input alphabet (without “_”)
• Γ finite tape alphabet with { _ } ∪ Σ ⊆ Γ
• q0 start state ∈ Q
• qaccept accept state ∈ Q
• qreject reject state ∈ Q
• δ the transition function

δ: Q\{qaccept,qreject} × Γk → Q × Γk × {L,R}k

11/7/2013 CSE 2001, Fall 2013 23

k-tape TMs versus 1-tape TMs
Theorem 3.13: For every multi-tape TM M, there
is a single-tape TM M’ such that L(M)=L(M’).
Or, for every multi-tape TM M, there is an
equivalent single-tape TM M’.

Proving and understanding these kinds of robustness
results, is essential for appreciating the power of the
Turing machine model.

From this theorem Corollary 3.9 follows:
A language L is TM-recognizable if and only if
some multi-tape TM recognizes L.

11/7/2013 CSE 2001, Fall 2013 24

Outline Proof Thm. 3.13

Let M=(Q,Σ,Γ,δ,q0,qaccept,qreject) be a k-tape TM.
Construct 1-tape M’ with expanded Γ’ = Γ∪ Γ∪{#}

Represent M-configuration
u1qja1v1, u2qja2v2, …, ukqjakvk

by M’ configuration,
qj # u1a1v1 # u2a2v2 # … # ukakvk

(The tapes are separated by #, the head
positions are marked by underlined letters.)

11/7/2013 CSE 2001, Fall 2013 25

Proof Thm. 3.13 (cont.)

On input w=w1…wn, the TM M’ does the following:
• Prepare initial string: #w1…wn#_#Λ#_#_ Λ
• Read the underlined input letters ∈ Γk

• Simulate M by updating the input and the
underlining of the head-positions.

• Repeat 2-3 until M has reached a halting state
• Halt accordingly.

PS: If the update requires overwriting a # symbol,
then shift the part # Λ_ one position to the right.

11/7/2013 CSE 2001, Fall 2013 26

Non-deterministic TMs
A nondeterministic Turing machine M can have
several options at every step. It is defined by
the 7-tuple (Q,Σ,Γ,δ,q0,qaccept,qreject), with
• Q finite set of states
• Σ finite input alphabet (without “_”)
• Γ finite tape alphabet with { _ } ∪ Σ ⊆ Γ
• q0 start state ∈ Q
• qaccept accept state ∈ Q
• qreject reject state ∈ Q
• δ the transition function

δ: Q\{qaccept,qreject} × Γ → P (Q × Γ × {L,R})

11/7/2013 CSE 2001, Fall 2013 27

Robustness
Just like k-tape TMs, nondeterministic Turing
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only
if some nondeterministic TM recognizes it.”

The Turing machine model is extremely robust.

11/7/2013 CSE 2001, Fall 2013 28

Computing with non-deterministic
TMs

C1

C6
C5

C4C3
C2

Evolution of the n.d. TM
represented by a tree
of configurations (rather
than a single path).

Μ “reject”

“accept”

If there is (at least)
one accepting leave,
then the TM accepts.

t=1

t=2

t=3

11/7/2013 CSE 2001, Fall 2013 29

Simulating Non-deterministic
TMs with Deterministic Ones

We want to search every path down the tree
for accepting configurations.

Bad idea: “depth first”. This approach can get
lost in never-halting paths.

Good idea: “breadth first”. For time step 1,2,…
we list all possible configurations of the non-
deterministic TM. The simulating TM accepts
when it lists an accepting configuration.

11/7/2013 CSE 2001, Fall 2013 30

Breadth First

Let b be the maximum number
of children of a node.

C1

C6
C5

C4C3
C2

Μ “reject”

“accept”

t=1

t=2

t=3
Any node in the tree can
be uniquely identified by
a string ∈ {1,…,b}*.

Example: location of the
rejecting configuration is (3,1).

With the lexicographical listing ε, (1), (2),…, (b), (1,1),
(1,2),…,(1,b), (2,1),… et cetera, we cover all nodes.

11/7/2013 CSE 2001, Fall 2013 31

Proof of Theorem 3.10
Let M be the non-deterministic TM on input w.

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w.

1) T1 contains w, T2 and T3 are empty
2) Simulate M on w via the deterministic path

to the node of tape 3. If the node accepts,
“accept”, otherwise go to 3)

3) Increase the node value on T3; go to 2)

11/7/2013 CSE 2001, Fall 2013 32

Robustness
Just like k-tape TMs, nondeterministic Turing
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only
if some nondeterministic TM recognizes it.”

Let’s consider other ways of computing a language…

11/7/2013 CSE 2001, Fall 2013 33

Enumerating Languages
Thus far, the Turing machines were ‘recognizers’.

When a TM E generates the words of a language,
E is an enumerator (cf. “recursively enumerable”).

A Turing machine E, enumerates the language L
if it prints an (infinite) list of strings on the tape
such that all elements of L will appear on the tape,
and all strings on the tape are elements of L.
(E starts on an empty input tape. The strings
can appear in any order; repetition is allowed.)

11/7/2013 CSE 2001, Fall 2013 34

Enumerating = Recognizing
Theorem 3.13: A language L is TM-recognizable
if and only if L is enumerable.

Proof: (“if”) Take the enumerator E and input w.
Run E and check the strings it generates.
If w is produced, then “accept” and stop,
otherwise let E continue.
(“only if”) Take the recognizer M. Let s1,s2,…
be a listing of all strings ∈Σ*⊇L.
For j=1,2,… run M on s1,…,sj for j time-steps.
If M accepts an s, print s. Keep increasing j.

11/7/2013 CSE 2001, Fall 2013 35

Other Computational Models

We can consider many other ‘reasonable’
models of computation: DNA computing,
neural networks, quantum computing…

Experience teaches us that every such model
can be simulated by a Turing machine.

Church-Turing Thesis:
The intuitive notion of computing and algorithms
is captured by the Turing machine model.

11/7/2013 CSE 2001, Fall 2013 36

Importance of the
Church-Turing Thesis

The Church-Turing thesis marks the end of
a long sequence of developments that concern
the notions of “way-of-calculating”, “procedure”,
“solving”, “algorithm”.

For a long time, this was an implicit notion
that defied proper analysis.

Goes back to Euclid’s GCD algorithm (300 BC).

11/7/2013 CSE 2001, Fall 2013 37

“Algorithm”

After Abū ‘Abd Allāh Muhammed
ibn Mūsā al-Khwārizmī (770 – 840)

His “Al-Khwarizmi on the Hindu Art of
Reckoning” describes the decimal system
(with zero), and gives methods for calculating
square roots and other expressions.

“Algebra” is named after an earlier book.

11/7/2013 CSE 2001, Fall 2013 38

Hilbert’s 10th Problem

In 1900, David Hilbert (1862–1943) proposed
his Mathematical Problems (23 of them).

The Hilbert’s 10th problem is: Determination
of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of
unknown quantities and with integer coefficients: To
devise a process according to which it can be
determined by a finite number of operations whether
the equation is solvable in integers.

11/7/2013 CSE 2001, Fall 2013 39

Diophantine Equations

Let P(x1,…,xk) be a polynomial in k variables
with integral coefficients. Does P have an
integral root (x1,…,xk)∈Zk ?

Example: P(x,y,z) = 6x3yz + 3xy2–x3–10
has integral root (x,y,z) = (5,3,0).

Other example: P(x,y) = 21x2–81xy+1
does not have an integral root.

11/7/2013 CSE 2001, Fall 2013 40

(Un)solving Hilbert’s 10th
Hilbert’s “…a process according to which it can
be determined by a finite number of operations…”
needed to be defined in a proper way.

This was done in 1936 by Church and Turing.

The impossibility of such a process for
exponential equations was shown by Davis,
Putnam and Robinson.

Matijasevič proved that Hilbert’s 10th problem
is unsolvable in 1970.

