CSE 2001: Introduction to Theory of Computation Fall 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

10/29/2013

Next

- Non-CF languages
- CFL pumping lemma

Non-CF Languages

The language L = { $a^nb^nc^n | n \ge 0$ } does not appear to be context-free.

Informal: The problem is that every variable can (only) act 'by itself' (*context-free*).

The problem of A $\Rightarrow^* vAy$: If S $\Rightarrow^* uAz \Rightarrow^* uvAyz \Rightarrow^* uvxyz \in L$, then S $\Rightarrow^* uAz \Rightarrow^* uvAyz \Rightarrow^* \dots \Rightarrow^* uv^iAy^iz$ $\Rightarrow^* uv^ixy^iz \in L$ as well, for all i=0,1,2,...

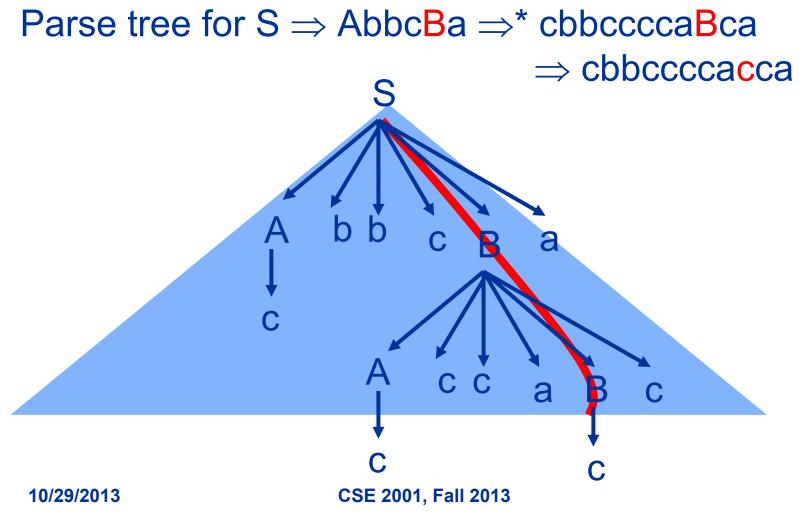
"Pumping Lemma for CFLs"

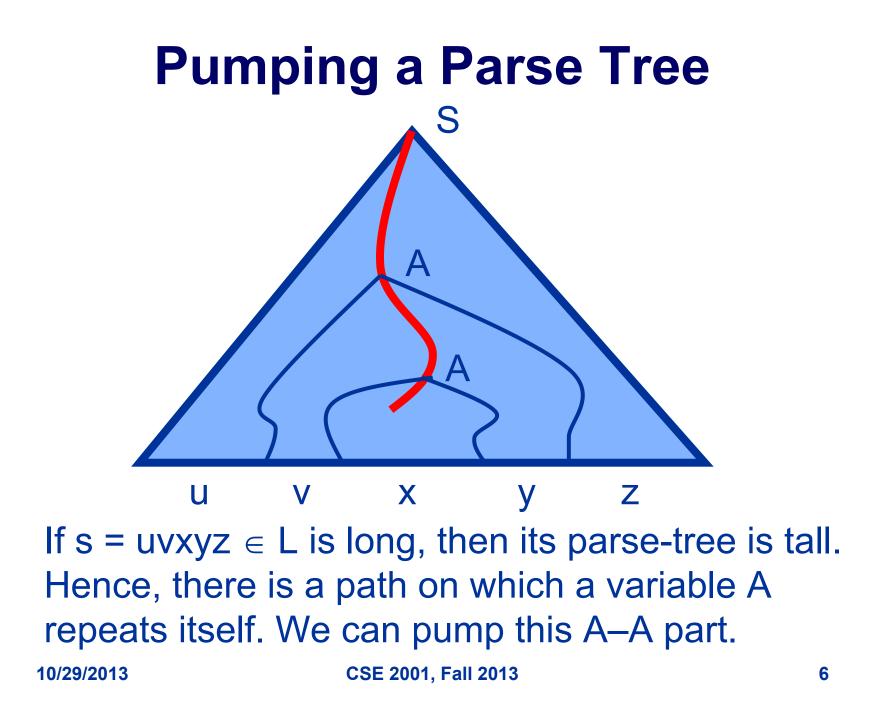
<u>Idea</u>: If we can prove the existence of derivations for elements of the CFL L that use the step $A \Rightarrow^* vAy$, then a new form of 'v-y pumping' holds: $A \Rightarrow^* vAy \Rightarrow^* v^2Ay^2 \Rightarrow^* v^3Ay^3 \Rightarrow^* ...)$

<u>Observation</u>: We can prove this existence if the parse-tree is tall enough.

10/29/2013

Remember Parse Trees



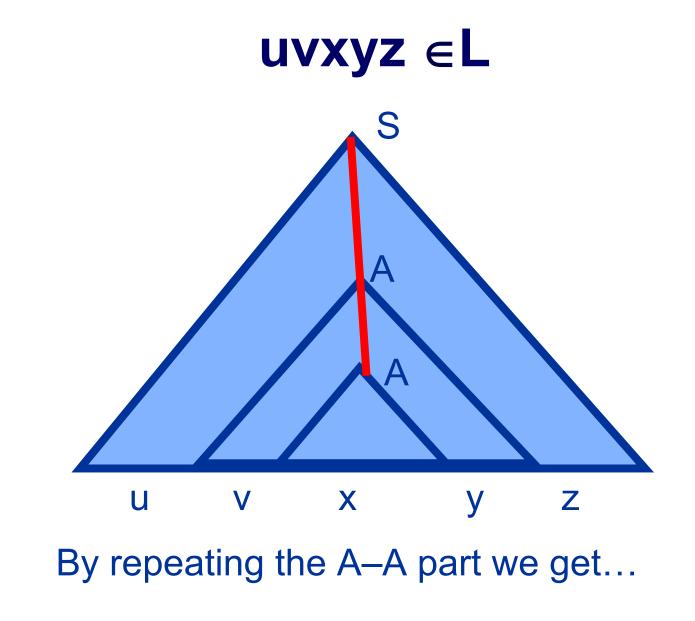


A Tree Tall Enough

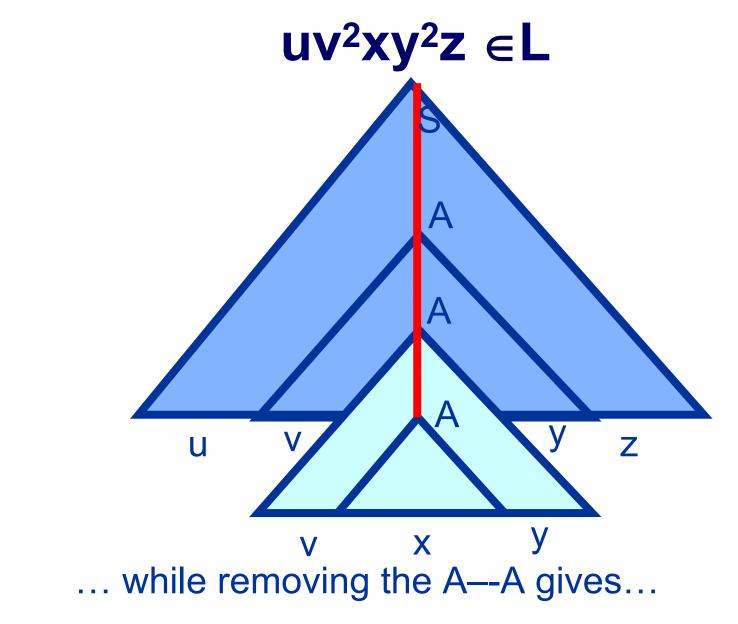
Let L be a context-free language, and let G be its grammar with maximal b symbols on the right side of the rules: $A \rightarrow X_1...X_b$

A parse tree of depth h produces a string with maximum length of b^h. Long strings implies tall trees.

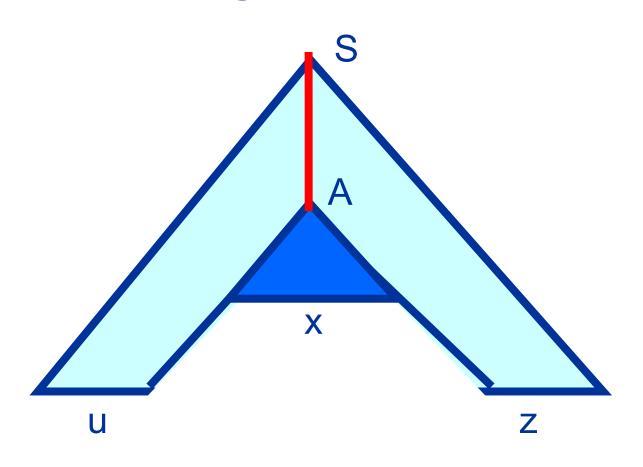
Let |V| be the number of variables of G. If h = |V|+2 or bigger, then there is a variable on a 'top-down path' that occurs more than once.



10/29/2013



Pumping down: $uxz \in L$



In general $uv^i xy^i z \in L$ for all i=0,1,2,...

Pumping Lemma for CFL

For every context-free language L, there is a <u>pumping length</u> p, such that for every string $s \in L$ and $|s| \ge p$, we can write s=uvxyz with

1) $uv^i xy^i z \in L$ for every $i \in \{0, 1, 2, ...\}$ 2) $|vy| \ge 1$ 3) $|vxy| \le p$

Note that 1) implies that $uxz \in L$ 2) says that vy cannot be the empty string ϵ Condition 3) is not always used

Formal Proof of Pumping Lemma

Let G=(V, Σ ,R,S) be the grammar of a CFL. Maximum size of rules is b≥2: A \rightarrow X₁...X_b A string s requires a <u>minimum</u> tree-depth ≥ log_b|s|. If |s| ≥ p=b^{|V|+2}, then tree-depth ≥ |V|+2, hence there is a path and variable A where A repeats itself: S \Rightarrow ^{*} uAz \Rightarrow ^{*} uvAyz \Rightarrow ^{*} uvxyz It follows that uvⁱxyⁱz \in L for all i=0,1,2,... Furthermore:

|vy| ≥ 1 because tree is minimal
|vxy| ≥ p because bottom tree with ≥ p leaves has a 'repeating path'

Pumping aⁿbⁿcⁿ (Ex. 2.20)

Assume that $B = \{a^n b^n c^n \mid n \ge 0\}$ is CFL Let p be the pumping length, and $s = a^p b^p c^p \in B$ P.L.: s = uvxyz = $a^{p}b^{p}c^{p}$, with $uv^{i}xy^{i}z \in B$ for all $i \ge 0$ Options for |vxy|: 1) The strings v and y are uniform (v=a...a and y=c...c, for example). Then uv²xy²z will not contain the same number of a's, b's and c's, hence $uv^2xy^2z \notin B$ 2) v and y are not uniform. Then uv²xy²z will not be a...ab...bc...c Hence $uv^2xy^2z \notin B$

Pumping aⁿbⁿcⁿ (cont.)

Assume that B = {aⁿbⁿcⁿ | n \geq 0} is CFL Let p be the pumping length, and s = a^pb^pc^p \in B <u>P.L.</u>: s = uvxyz = a^pb^pc^p, with uvⁱxyⁱz \in B for all i \geq 0

B is not a context-free language.

Example 2.21 (Pumping down)

Proof that C = {aⁱbⁱc^k | 0≤i≤j≤k } is not context-free.
Let p be the pumping length, and s = a^pb^pc^p ∈ C
P.L.: s = uvxyz, such that uvⁱxyⁱz ∈ C for every i≥0
Two options for 1 ≤ |vxy| ≤ p:
1) vxy = a*b*, then the string uv²xy²z has not enough c's, hence uv²xy²z ∉C
2) vxy = b*c*, then the string uv⁰xy⁰z = uxz has too many a's, hence uv⁰xy⁰z ∉C

<u>Contradiction</u>: C is not a context-free language.

$D = \{ ww | w \in \{0,1\}^* \} (Ex. 2.22)$

Carefully take the strings s∈D.
Let p be the pumping length, take s=0p1p0p1p.
Three options for s=uvxyz with 1 ≤ |vxy| ≤ p:
1) If a part of y is to the left of | in 0p1p|0p1p, then second half of uv2xy2z starts with "1"
2) Same reasoning if a part of v is to the right of middle of 0p1p|0p1p, hence uv2xy2z ∉ D
3) If x is in the middle of 0p1p|0p1p, then uxz equals 0p1i 0j1p ∉ D (because i or j < p)

Contradiction: D is not context-free.

Pumping Problems

Using the CFL pumping lemma is more difficult than the pumping lemma for regular languages.

You have to choose the string s carefully, and divide the options efficiently.

Additional CFL properties would be helpful (like we had for regular languages).

What about closure under standard operations?

Next

Closure properties of CFL

Union Closure Properties

<u>Lemma</u>: Let A_1 and A_2 be two CF languages, then the *union* $A_1 \cup A_2$ is context free as well.

<u>Proof</u>: Assume that the two grammars are $G_1=(V_1,\Sigma,R_1,S_1)$ and $G_2=(V_2,\Sigma,R_2,S_2)$. Construct a third grammar $G_3=(V_3,\Sigma,R_3,S_3)$ by: $V_3=V_1\cup V_2\cup \{S_3\}$ (new start variable) with $R_3=R_1\cup R_2\cup \{S_3\rightarrow S_1 \mid S_2\}$.

It follows that $L(G_3) = L(G_1) \cup L(G_2)$.

Intersection & Complement?

Let again A_1 and A_2 be two CF languages.

One can prove that, *in general*, the <u>intersection</u> $A_1 \cap A_2$, and the <u>complement</u> $\bar{A}_1 = \Sigma^* \setminus A_1$ are <u>not context free languages</u>.

One proves this with specific counter examples of languages.

What do we really know?

Can we always decide if a language L is regular/ context-free or not?

We know: { 1^x | x = 0 mod 7 } is regular { 1^x | x is prime } is not regular

But what about { 1× | x and x+2 are prime }?

```
This is (yet) unknown.
```

Describing a Language

- The problem lies in the informal notion of a description. Consider: $\{n \mid \exists a,b,c: a^n+b^n = c^n \}$
- { x | in year x the first female US president }
- { x | x is "an easy to remember number" }

We have to define what we mean by "description" and "method of deciding".