
10/29/2013 CSE 2001, Fall 2013 1

CSE 2001:
Introduction to Theory of Computation

Fall 2013

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

10/29/2013 CSE 2001, Fall 2013 2

Next

• Non-CF languages

• CFL pumping lemma

10/29/2013 CSE 2001, Fall 2013 3

Non-CF Languages
The language L = { anbncn | n0 } does not
appear to be context-free.

Informal: The problem is that every variable
can (only) act ‘by itself’ (context-free).

The problem of A * vAy :
If S * uAz * uvAyz * uvxyz  L,
then S * uAz * uvAyz * … * uviAyiz
 * uvixyiz  L as well, for all i=0,1,2,…

10/29/2013 CSE 2001, Fall 2013 4

“Pumping Lemma for CFLs”

Idea: If we can prove the existence of derivations
for elements of the CFL L that use the step
A * vAy, then a new form of ‘v-y pumping’
holds: A * vAy * v2Ay2 * v3Ay3 * …)

Observation: We can prove this existence if
the parse-tree is tall enough.

10/29/2013 CSE 2001, Fall 2013 5

Remember Parse Trees

Parse tree for S  AbbcBa * cbbccccaBca
  cbbccccacca

S

b b acA

c c caA

c c

c

B

B

10/29/2013 CSE 2001, Fall 2013 6

Pumping a Parse Tree

A

A

u v x y z
If s = uvxyz  L is long, then its parse-tree is tall.
Hence, there is a path on which a variable A
repeats itself. We can pump this A–A part.

S

10/29/2013 CSE 2001, Fall 2013 7

A Tree Tall Enough
Let L be a context-free language, and let
G be its grammar with maximal b symbols
on the right side of the rules: A  X1…Xb

A parse tree of depth h produces a string
with maximum length of bh.
Long strings implies tall trees.

Let |V| be the number of variables of G.
If h = |V|+2 or bigger, then there is a variable on
a ‘top-down path’ that occurs more than once.

10/29/2013 CSE 2001, Fall 2013 8

uvxyz L

A

A

u v x y z

By repeating the A–A part we get…

S

10/29/2013 CSE 2001, Fall 2013 9

uv2xy2z L

A

u v x y zRA

A

v x y
… while removing the A–-A gives…

S

10/29/2013 CSE 2001, Fall 2013 10

Pumping down: uxz  L

A

u z

In general uvixyiz  L for all i=0,1,2,…

S

x

10/29/2013 CSE 2001, Fall 2013 11

Pumping Lemma for CFL
For every context-free language L, there is a
pumping length p, such that for every string
sL and |s|p, we can write s=uvxyz with

1) uvixyiz  L for every i{0,1,2,…}
2) |vy|  1
3) |vxy|  p

Note that 1) implies that uxz  L
2) says that vy cannot be the empty string 
Condition 3) is not always used

10/29/2013 CSE 2001, Fall 2013 12

Formal Proof of Pumping Lemma
Let G=(V,,R,S) be the grammar of a CFL.
Maximum size of rules is b2: A  X1…Xb
A string s requires a minimum tree-depth  logb|s|.
If |s|  p=b|V|+2, then tree-depth  |V|+2, hence
there is a path and variable A where A repeats
itself: S * uAz * uvAyz * uvxyz
It follows that uvixyiz  L for all i=0,1,2,…
Furthermore:
 |vy|  1 because tree is minimal
 |vxy|  p because bottom tree with  p leaves
 has a ‘repeating path’

10/29/2013 CSE 2001, Fall 2013 13

Pumping anbncn (Ex. 2.20)
Assume that B = {anbncn | n0} is CFL
Let p be the pumping length, and s = apbpcp  B
P.L.: s = uvxyz = apbpcp, with uvixyiz  B for all i0
Options for |vxy|:
1) The strings v and y are uniform
 (v=a…a and y=c…c, for example).
 Then uv2xy2z will not contain the same number
 of a’s, b’s and c’s, hence uv2xy2zB
2) v and y are not uniform.
 Then uv2xy2z will not be a…ab…bc…c
 Hence uv2xy2zB

10/29/2013 CSE 2001, Fall 2013 14

Pumping anbncn (cont.)

Assume that B = {anbncn | n0} is CFL
Let p be the pumping length, and s = apbpcp  B
P.L.: s = uvxyz = apbpcp, with uvixyiz  B for all i0

We showed: No options for |vxy| such that
 uvixyiz  B for all i. Contradiction.

B is not a context-free language.

10/29/2013 CSE 2001, Fall 2013 15

Example 2.21 (Pumping down)

Proof that C = {aibjck | 0ijk } is not context-free.
Let p be the pumping length, and s = apbpcp  C
P.L.: s = uvxyz, such that uvixyiz  C for every i0
Two options for 1  |vxy|  p:
1) vxy = a*b*, then the string uv2xy2z has
 not enough c’s, hence uv2xy2zC
2) vxy = b*c*, then the string uv0xy0z = uxz
 has too many a’s, hence uv0xy0zC

Contradiction: C is not a context-free language.

10/29/2013 CSE 2001, Fall 2013 16

D = { ww | w{0,1}* } (Ex. 2.22)
Carefully take the strings sD.
Let p be the pumping length, take s=0p1p0p1p.
Three options for s=uvxyz with 1  |vxy|  p:
1) If a part of y is to the left of | in 0p1p|0p1p,
 then second half of uv2xy2z starts with “1”
2) Same reasoning if a part of v is to the right
 of middle of 0p1p|0p1p, hence uv2xy2z  D
3) If x is in the middle of 0p1p|0p1p, then uxz
 equals 0p1i 0j1p  D (because i or j < p)

Contradiction: D is not context-free.

10/29/2013 CSE 2001, Fall 2013 17

Pumping Problems
Using the CFL pumping lemma is more difficult
than the pumping lemma for regular languages.

You have to choose the string s carefully,
and divide the options efficiently.

Additional CFL properties would be helpful
(like we had for regular languages).

What about closure under standard operations?

10/29/2013 CSE 2001, Fall 2013 18

Next

• Closure properties of CFL

10/29/2013 CSE 2001, Fall 2013 19

Union Closure Properties
Lemma: Let A1 and A2 be two CF languages,
then the union A1A2 is context free as well.

Proof: Assume that the two grammars are
G1=(V1,,R1,S1) and G2=(V2,,R2,S2).
Construct a third grammar G3=(V3,,R3,S3) by:
 V3 = V1  V2  { S3 } (new start variable) with
 R3 = R1  R2  { S3  S1 | S2 }.

It follows that L(G3) = L(G1)  L(G2).

10/29/2013 CSE 2001, Fall 2013 20

Intersection & Complement?
Let again A1 and A2 be two CF languages.

One can prove that, in general,
 the intersection A1  A2 ,
and
 the complement Ā1= * \ A1
are not context free languages.

One proves this with specific counter examples
of languages.

10/29/2013 CSE 2001, Fall 2013 21

What do we really know?
Can we always decide if a language L is regular/
context-free or not?

We know:
 { 1x | x = 0 mod 7 } is regular
 { 1x | x is prime } is not regular

But what about
{ 1x | x and x+2 are prime }?

This is (yet) unknown.

10/29/2013 CSE 2001, Fall 2013 22

Describing a Language
The problem lies in the informal notion of
a description.
Consider:
 { n | a,b,c: an+bn = cn }

 { x | in year x the first female US president }

 { x | x is “an easy to remember number” }

We have to define what we mean by “description”
and “method of deciding”.

