Back to RL ~ RE

- The second part (Lemma 1.60): If a language is regular, then it can be described by a regular expression.
- Proof strategy:
 - regular implies equivalent DFA.
 - convert DFA to GNFA (generalized NFA)
 - convert GNFA to NFA.

GNFA: NFA that have regular expressions as transition labels

Example GNFA

10/3/2013

Generalized NFA - defn

Generalized non-deterministic finite automaton

M=(Q, Σ , δ , q_{start}, q_{accept}) with

- Q finite set of states
- Σ the input alphabet
- $\bullet \, q_{start}$ the start state
- q_{accept} the (unique) accept state
- $\delta:(Q \{q_{accept}\}) \times (Q \{q_{start}\}) \rightarrow \mathcal{R}$ is the transition

function

(\mathcal{R} is the set of regular expressions over Σ)

(NOTE THE NEW DEFN OF δ)

10/3/2013

Characteristics of GNFA's δ

• $\delta:(Q \setminus \{q_{accept}\}) \times (Q \setminus \{q_{start}\}) \rightarrow \mathcal{R}$

The interior Q\{q_{accept},q_{start}} is fully connected by δ From q_{start} only 'outgoing transitions' To q_{accept} only 'ingoing transitions' Impossible q_i \rightarrow q_j transitions are labeled " δ (q_i,q_j) = \emptyset "

Observation: This GNFA recognizes the _____ language L(R)

Proof Idea of Lemma 1.60

Proof idea (given a DFA M):

Construct an equivalent GNFA M' with k \geq 2 states

Reduce one-by-one the internal states until k=2

This GNFA will be of the form This regular expression R will be such that L(R) = L(M)

10/3/2013

DFA M \rightarrow **Equivalent GNFA M**'

- Let M have k states $Q = \{q_1, ..., q_k\}$
- Add two states q_{accept} and q_{start}
- Connect q_{start} to earlier q_1 :

- Connect old accepting states to q_{accept}

- Complete missing transitions

- Join multiple transitions:

Remove Internal state of GNFA

If the GNFA M has more than 2 states, 'rip' internal q_{rip} to get equivalent GNFA M' by:

- Removing state q_{rip}: Q'=Q\{q_{rip}}
- Changing the transition function δ by

$$\begin{split} \delta'(q_i,q_j) &= \delta(q_i,q_j) \cup (\delta(q_i,q_{rip})(\delta(q_i,q_j))^* \delta(q_{rip},q_j)) \\ \text{for every } q_i &\in Q' \backslash \{q_{accept}\} \text{ and } q_j &\in Q' \backslash \{q_{start}\} \end{split}$$

Proof Lemma 1.60

Let M be DFA with k states

Create equivalent GNFA M' with k+2 states

Reduce in k steps M' to M'' with 2 states

The resulting GNFA describes a single regular expressions R

The regular language L(M) equals the language L(R) of the regular expression R

10/3/2013

Proof Lemma 1.60 - continued

- Use induction (on number of states of GNFA) to prove correctness of the conversion procedure.
- Base case: k=2.
- Inductive step: 2 cases q_{rip} is/is not on accepting path.

Recap RL = RE

Let R be a regular expression, then there exists an NFA M such that L(R) = L(M)

The language L(M) of a DFA M is equivalent to a language L(M') of a GNFA = M', which can be converted to a two-state M''

The transition $q_{start} \longrightarrow R \rightarrow q_{accept}$ of M'' obeys L(R) = L(M'')

Hence: $RE \subseteq NFA = DFA \subseteq GNFA \subseteq RE$

10/3/2013

Example

$L = \{w | the sum of the bits of w is odd\}$