CSE 2001: Introduction to Theory of Computation Fall 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

Recall: Regular Languages

The language recognized by a finite automaton M is denoted by L(M).

A <u>regular language</u> is a language for which there exists a recognizing finite automaton.

Terminology: closure

 A set is defined to be closed under an operation if that operation on members of the set always produces a member of the same set. (adapted from wikipedia)

E.g.:

- The integers are closed under addition, multiplication.
- The integers are not closed under division
- Σ^* is closed under concatenation
- A set can be defined by closure -- Σ* is called the (Kleene) closure of Σ under concatenation.

Terminology: Regular Operations

- Pages 44-47 (Sipser, 3rd edition)
- The regular operations are:
 - 1. Union
 - 2. Concatenation
 - 3. Star (Kleene Closure): For a language A,

 $A^* = \{w_1w_2w_3...w_k | k \ge 0, \text{ and each } w_i \in A\}$

Closure Properties

- Set of regular languages is closed under
 - -- Complementation
 - Union
 - Concatenation
 - Star (Kleene Closure)

Complement of a regular language

• Swap the accepting and non-accept states of M to get M'.

• The complement of a regular language is regular.

Other closure properties

Union: Can be done with DFA, but using a complicated construction.

Concatenation: We tried and failed

Star: ???

We introduced non-determinism in FA

Recall: NFA drawing conventions

- Not all transitions are labeled
- Unlabeled transitions are assumed to go to a reject state from which the automaton cannot escape

Closure under regular operations Union (new proof):

FIGURE 1.46 Construction of an NFA N to recognize $A_1 \cup A_2$

CSE 2001, Fall 2013

Closure under regular operations Concatenation:

FIGURE 1.48 Construction of *N* to recognize $A_1 \circ A_2$

9/26/2013

CSE 2001, Fall 2013

Closure under regular operations Star:

FIGURE 1.50

Construction of N to recognize A^*

CSE 2001, Fall 2013

Incorrect reasoning about RL

• Since $L_1 = \{w | w=a^n, n \in \mathbb{N}\},\$

 $L_2 = \{w | w = b^n, n \in \mathbb{N}\}$ are regular, therefore $L_1 \bullet L_2 = \{w | w = a^n b^n, n \in \mathbb{N}\}$ is

regular

• If L_1 is a regular language, then $L_2 = \{w^R | w \in L_1\}$ is regular, and Therefore $L_1 \cdot L_2 = \{w \cdot w^R \mid w \in L_1\}$ is regular

Are NFA more powerful than DFA?

- NFA can solve every problem that DFA can (DFA are also NFA)
- Can DFA solve every problem that NFA can?