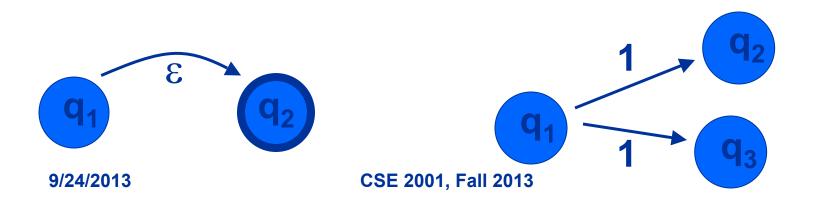
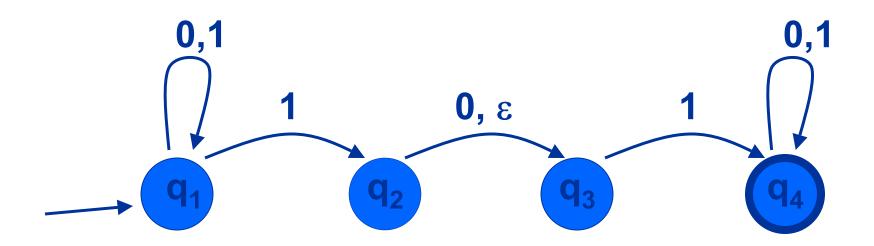
Nondeterminism

Nondeterministic machines are capable of being lucky, no matter how small the probability.

A nondeterministic finite automaton has transition rules/possibilities like



A Nondeterministic Automaton



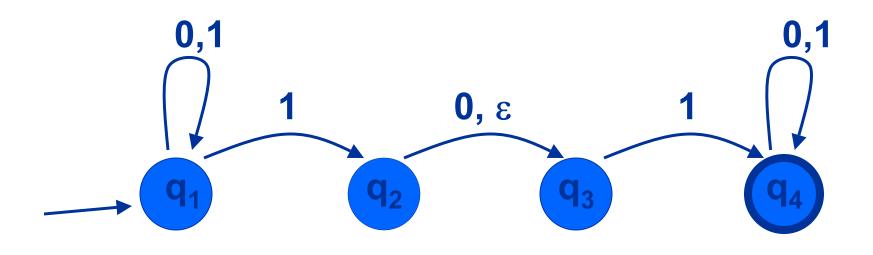
This automaton accepts "0110", because there is a possible path that leads to an accepting state, namely:

 $q_1 \rightarrow q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_4 \rightarrow q_4$

9/24/2013

CSE 2001, Fall 2013

A Nondeterministic Automaton



The string 1 gets rejected: on "1" the automaton can only reach: $\{q_1, q_2, q_3\}$.

Nondeterminism ~ Parallelism

For any (sub)string w, the nondeterministic automaton can be in a set of possible states.

If the final set contains an accepting state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion. Its computational path is no longer a line, but a tree." (Fig. 1.16)

Nondeterministic FA (def.)

- A nondeterministic finite automaton (NFA) M is defined by a 5-tuple M=(Q,Σ,δ,q₀,F), with
 - -Q: finite set of states
 - $-\Sigma$: finite alphabet
 - $-\delta$: transition function δ :Q× $\Sigma_{\varepsilon} \rightarrow \mathcal{P}(Q)$
 - $-q_0 \in Q$: start state
 - $-F \subseteq Q$: set of accepting states

Nondeterministic $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \rightarrow \mathcal{P}(\mathbf{Q})$

The function $\delta: \mathbb{Q} \times \Sigma_{\varepsilon} \rightarrow \mathscr{P}(\mathbb{Q})$ is the crucial difference. It means: "When reading symbol "a" while in state q, one can go to one of the states in $\delta(q,a) \subseteq \mathbb{Q}$."

The ε in $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$ takes care of the empty string transitions.

Recognizing Languages (def)

A nondeterministic FA **M** = (Q, Σ , δ ,q,F) <u>accepts</u> a string **w** = w₁...w_n if and only if we can rewrite w as y₁...y_m with y_i $\in \Sigma_{\varepsilon}$ and there is a sequence r₀...r_m of states in Q such that:

1) $r_0 = q_0$

2) $r_{i+1} \in \delta(r_i, y_{i+1})$ for all i=0,...,m–1

3) $r_m \in F$

Exercises

[Sipser 1.5]: Give NFAs with the specified number of states that recognize the following languages over the alphabet $\Sigma = \{0,1\}$:

- 1. { w | w ends with 00}, three states
- 2. {0}; two states
- 3. { w | w contains even number of 0s, or exactly two 1s}, six states
- 4. $\{0^n \mid n \in N\}$, one state

Exercises - 2

Proof the following result: "If L_1 and L_2 are regular languages, then $L_1 \cap \overline{L}_2$ is a regular language too."

Describe the language that is recognized by this nondeterministic automaton:

