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Next: Finite automata
Ch. 1.1: Deterministic finite automata 
(DFA)

We will : 
• Design automata for simple problems
• Study languages recognized by finite 
automata.
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Recognizing finite languages
• Just need a lookup table and a search 

algorithm
• Problem – cannot express infinite sets, 

e.g. odd integers
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Finite Automata
The simplest machine that can recognize 
an infinite language.

“Read once”, “no write” procedure.

Useful for describing algorithms also. 
Used a lot in network protocol description.

Remember: DFA’s can accept finite 
languages as well.
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A Simple Automaton (0)

q1 q2 q3

1 0

0,1

0 1

statestransition 
rules

starting state

accepting state
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A Simple Automaton (1)

q1 q2 q3

1 0

0,1

0 1

on input “0110”, the machine goes:
q1  q1  q2  q2  q3 = “reject”

start
accept
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A Simple Automaton (2)

q1  q2  q3  q2 = “accept”

q1 q2 q3

1 0

0,1

0 1

on input “101”, the machine goes:
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A Simple Automaton (3)

010: reject
11: accept
010100100100100: accept
010000010010: reject
: reject

q1 q2 q3

1 0

0 1

0,1
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Examples of languages 
accepted by DFA

• L = { w | w ends with 1}
• L = { w | w contains sub-string 00}
• L = { w | |w| is divisible by 3}
• L = { w | |w| is odd or w ends with 1} 
• L = { w | |w| is divisible by 106}

Note:  = {0,1} in each case
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DFA design
• Design DFA for language 

– L = {w  {0,1}* | w contains substring 01}
• Three states to remember:

– Have seen the substring 01 
– Not seen substring 01 and last symbol was 0
– Not seen substring 01 and last symbol was 

not 0
• General principles?
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DFA : Formal definition 
• A deterministic finite automaton (DFA)

M is defined by a 5-tuple M=(Q,,,q0,F)

– Q: finite set of states
– : finite alphabet
– : transition function :QQ
– q0Q: start state
– FQ: set of accepting states
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M = (Q,,,q,F)

states Q = {q1,q2,q3}

alphabet  = {0,1} 

start state q1

accept states F={q2}

transition function :

223

232

211

qqq
qqq
qqq
10

q1 q2 q3

1 0
0 1

0,1
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Recognizing Languages (defn)

A finite automaton M = (Q,,,q,F) accepts 
a string/word w = w1…wn if and only if there is a 
sequence r0…rn of states in Q such that:

1)  r0 = q0

2)  (ri,wi+1) = ri+1 for all i = 0,…,n–1

3)  rn  F
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Regular Languages

The language recognized by a finite
automaton M is denoted by L(M).

A regular language is a language 
for which there exists a recognizing
finite automaton.
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Two DFA Questions

Given the description of a finite 
automaton M = (Q,,,q,F), what is 
the language L(M) that it recognizes?

In general, what kind of languages 
can be recognized by finite automata?
(What are the regular languages?)
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Union of Two Languages

Theorem 1.12: If A1 and A2 are regular 
languages, then so is A1  A2.
(The regular languages are ‘closed’ under
the union operation.)

Proof idea: A1 and A2 are regular, hence there are 
two DFA M1 and M2, with A1=L(M1) and A2=L(M2).
Out of these two DFA, we will make a third 
automaton M3 such that L(M3) = A1  A2.
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Proof Union-Theorem (1)
M1=(Q1,,1,q1,F1) and M2=(Q2,,2,q2,F2)

Define M3 = (Q3,,3,q3,F3) by:
• Q3 = Q1Q2 = {(r1,r2) | r1Q1 and r2Q2}

• 3((r1,r2),a) = (1(r1,a), 2(r2,a))

• q3 = (q1,q2)

• F3 = {(r1,r2) | r1F1 or r2F2}
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Proof Union-Theorem (2)

The automaton M3 = (Q3,,3,q3,F3) runs M1
and M2 in ‘parallel’ on a string w.

In the end, the final state (r1,r2) ‘knows’
if wL1 (via r1F1?) and if wL2 (via r2F2?)

The accepting states F3 of M3 are such that
wL(M3) if and only if wL1 or wL2, for:
F3 = {(r1,r2) | r1F1 or r2F2}.
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Concatenation of L1 and L2

Definition: L1• L2 = { xy | xL1 and yL2 }

Example: {a,b} • {0,11} = {a0,a11,b0,b11}

Theorem 1.13: If L1 and L2 are regular 
langues, then so is L1•L2.
(The regular languages are ‘closed’ under
concatenation.)
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Proving Concatenation Thm.

Consider the concatenation:
{1,01,11,001,011,…} • {0,000,00000,…}
(That is: the bit strings that end with a “1”,
followed by an odd number of 0’s.)

Problem is: given a string w, how does 
the automaton know where the L1 part
stops and the L2 substring starts?

We need an M with ‘lucky guesses’.


