
9/19/2013 CSE 2001, Fall 2013 1

CSE 2001:
Introduction to Theory of Computation

Fall 2013

Suprakash Datta
datta@cse.yorku.ca

Office: CSEB 3043
Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

9/19/2013 CSE 2001, Fall 2013 2

Next: Finite automata
Ch. 1.1: Deterministic finite automata
(DFA)

We will :
• Design automata for simple problems
• Study languages recognized by finite
automata.

9/19/2013 CSE 2001, Fall 2013 3

Recognizing finite languages
• Just need a lookup table and a search

algorithm
• Problem – cannot express infinite sets,

e.g. odd integers

9/19/2013 CSE 2001, Fall 2013 4

Finite Automata
The simplest machine that can recognize
an infinite language.

“Read once”, “no write” procedure.

Useful for describing algorithms also.
Used a lot in network protocol description.

Remember: DFA’s can accept finite
languages as well.

9/19/2013 CSE 2001, Fall 2013 5

A Simple Automaton (0)

q1 q2 q3

1 0

0,1

0 1

statestransition
rules

starting state

accepting state

9/19/2013 CSE 2001, Fall 2013 6

A Simple Automaton (1)

q1 q2 q3

1 0

0,1

0 1

on input “0110”, the machine goes:
q1 q1 q2 q2 q3 = “reject”

start
accept

9/19/2013 CSE 2001, Fall 2013 7

A Simple Automaton (2)

q1 q2 q3 q2 = “accept”

q1 q2 q3

1 0

0,1

0 1

on input “101”, the machine goes:

9/19/2013 CSE 2001, Fall 2013 8

A Simple Automaton (3)

010: reject
11: accept
010100100100100: accept
010000010010: reject
: reject

q1 q2 q3

1 0

0 1

0,1

9/19/2013 CSE 2001, Fall 2013 9

Examples of languages
accepted by DFA

• L = { w | w ends with 1}
• L = { w | w contains sub-string 00}
• L = { w | |w| is divisible by 3}
• L = { w | |w| is odd or w ends with 1}
• L = { w | |w| is divisible by 106}

Note: = {0,1} in each case

9/19/2013 CSE 2001, Fall 2013 10

DFA design
• Design DFA for language

– L = {w {0,1}* | w contains substring 01}
• Three states to remember:

– Have seen the substring 01
– Not seen substring 01 and last symbol was 0
– Not seen substring 01 and last symbol was

not 0
• General principles?

9/19/2013 CSE 2001, Fall 2013 11

DFA : Formal definition
• A deterministic finite automaton (DFA)

M is defined by a 5-tuple M=(Q,,,q0,F)

– Q: finite set of states
– : finite alphabet
– : transition function :QQ
– q0Q: start state
– FQ: set of accepting states

9/19/2013 CSE 2001, Fall 2013 12

M = (Q,,,q,F)

states Q = {q1,q2,q3}

alphabet = {0,1}

start state q1

accept states F={q2}

transition function :

223

232

211

qqq
qqq
qqq
10

q1 q2 q3

1 0
0 1

0,1

9/19/2013 CSE 2001, Fall 2013 13

Recognizing Languages (defn)

A finite automaton M = (Q,,,q,F) accepts
a string/word w = w1…wn if and only if there is a
sequence r0…rn of states in Q such that:

1) r0 = q0

2) (ri,wi+1) = ri+1 for all i = 0,…,n–1

3) rn F

9/19/2013 CSE 2001, Fall 2013 14

Regular Languages

The language recognized by a finite
automaton M is denoted by L(M).

A regular language is a language
for which there exists a recognizing
finite automaton.

9/19/2013 CSE 2001, Fall 2013 15

Two DFA Questions

Given the description of a finite
automaton M = (Q,,,q,F), what is
the language L(M) that it recognizes?

In general, what kind of languages
can be recognized by finite automata?
(What are the regular languages?)

9/19/2013 CSE 2001, Fall 2013 16

Union of Two Languages

Theorem 1.12: If A1 and A2 are regular
languages, then so is A1 A2.
(The regular languages are ‘closed’ under
the union operation.)

Proof idea: A1 and A2 are regular, hence there are
two DFA M1 and M2, with A1=L(M1) and A2=L(M2).
Out of these two DFA, we will make a third
automaton M3 such that L(M3) = A1 A2.

9/19/2013 CSE 2001, Fall 2013 17

Proof Union-Theorem (1)
M1=(Q1,,1,q1,F1) and M2=(Q2,,2,q2,F2)

Define M3 = (Q3,,3,q3,F3) by:
• Q3 = Q1Q2 = {(r1,r2) | r1Q1 and r2Q2}

• 3((r1,r2),a) = (1(r1,a), 2(r2,a))

• q3 = (q1,q2)

• F3 = {(r1,r2) | r1F1 or r2F2}

9/19/2013 CSE 2001, Fall 2013 18

Proof Union-Theorem (2)

The automaton M3 = (Q3,,3,q3,F3) runs M1
and M2 in ‘parallel’ on a string w.

In the end, the final state (r1,r2) ‘knows’
if wL1 (via r1F1?) and if wL2 (via r2F2?)

The accepting states F3 of M3 are such that
wL(M3) if and only if wL1 or wL2, for:
F3 = {(r1,r2) | r1F1 or r2F2}.

9/19/2013 CSE 2001, Fall 2013 19

Concatenation of L1 and L2

Definition: L1• L2 = { xy | xL1 and yL2 }

Example: {a,b} • {0,11} = {a0,a11,b0,b11}

Theorem 1.13: If L1 and L2 are regular
langues, then so is L1•L2.
(The regular languages are ‘closed’ under
concatenation.)

9/19/2013 CSE 2001, Fall 2013 20

Proving Concatenation Thm.

Consider the concatenation:
{1,01,11,001,011,…} • {0,000,00000,…}
(That is: the bit strings that end with a “1”,
followed by an odd number of 0’s.)

Problem is: given a string w, how does
the automaton know where the L1 part
stops and the L2 substring starts?

We need an M with ‘lucky guesses’.

