CSE 2001: Introduction to Theory of Computation Fall 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

9/19/2013

Next: Finite automata

Ch. 1.1: Deterministic finite automata (DFA)

We will :

- Design automata for simple problems
- Study languages recognized by finite automata.

Recognizing finite languages

- Just need a lookup table and a search algorithm
- Problem cannot express infinite sets, e.g. odd integers

Finite Automata

The simplest machine that can recognize an infinite language.

"Read once", "no write" procedure.

Useful for describing algorithms also. Used a lot in network protocol description.

Remember: DFA's can accept finite languages as well.

A Simple Automaton (0)

A Simple Automaton (1)

A Simple Automaton (2)

on input "101", the machine goes: $q_1 \rightarrow q_2 \rightarrow q_3 \rightarrow q_2 =$ "accept"

9/19/2013

A Simple Automaton (3)

010: reject 0,1 11: accept 010100100100100: accept 010000010010: reject ε: reject

9/19/2013

Examples of languages accepted by DFA

- L = { w | w ends with 1}
- L = { w | w contains sub-string 00}
- L = { w | |w| is divisible by 3}
- $L = \{ w \mid |w| \text{ is odd or } w \text{ ends with } 1 \}$
- $L = \{ w | |w| \text{ is divisible by } 10^6 \}$

Note: $\Sigma = \{0,1\}$ in each case

DFA design

- Design DFA for language
 − L = {w ∈ {0,1}* | w contains substring 01}
- Three states to remember:
 - Have seen the substring 01
 - Not seen substring 01 and last symbol was 0
 - Not seen substring 01 and last symbol was not 0
- General principles?

DFA : Formal definition

- A deterministic finite automaton (DFA)
 M is defined by a 5-tuple M=(Q,Σ,δ,q₀,F)
 - Q: finite set of states
 - $-\Sigma$: finite alphabet
 - δ : transition function δ :Q× Σ →Q
 - $-q_0 \in Q$: start state
 - $F \subseteq Q$: set of accepting states

$M = (Q, \Sigma, \delta, q, F)$

Recognizing Languages (defn)

A finite automaton $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}, \mathbf{F})$ accepts a string/word $\mathbf{w} = w_1 \dots w_n$ if and only if there is a sequence $r_0 \dots r_n$ of states in Q such that:

1)
$$r_0 = q_0$$

2) $\delta(r_i, w_{i+1}) = r_{i+1}$ for all $i = 0, ..., n-1$
3) $r_n \in F$

Regular Languages

The language recognized by a finite automaton M is denoted by L(M).

A <u>regular language</u> is a language for which there exists a recognizing finite automaton.

Two DFA Questions

Given the description of a finite automaton $\mathbf{M} = (\mathbf{Q}, \Sigma, \delta, \mathbf{q}, \mathbf{F})$, what is the language $\mathbf{L}(\mathbf{M})$ that it recognizes?

In general, what kind of languages can be recognized by finite automata? (What are the regular languages?)

Union of Two Languages

<u>Theorem 1.12</u>: If A_1 and A_2 are regular languages, then so is $A_1 \cup A_2$. (The regular languages are 'closed' under the union operation.)

<u>Proof idea</u>: A_1 and A_2 are regular, hence there are two DFA M₁ and M₂, with $A_1=L(M_1)$ and $A_2=L(M_2)$. Out of these two DFA, we will make a third automaton M₃ such that $L(M_3) = A_1 \cup A_2$.

9/19/2013

Proof Union-Theorem (1)

 $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1) \text{ and } M_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$

Define $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ by: • $Q_3 = Q_1 \times Q_2 = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}$

- $\delta_3((\mathbf{r}_1,\mathbf{r}_2),\mathbf{a}) = (\delta_1(\mathbf{r}_1,\mathbf{a}), \delta_2(\mathbf{r}_2,\mathbf{a}))$
- $q_3 = (q_1, q_2)$

•
$$F_3 = \{(r_1, r_2) | r_1 \in F_1 \text{ or } r_2 \in F_2\}$$

Proof Union-Theorem (2)

The automaton $M_3 = (Q_3, \Sigma, \delta_3, q_3, F_3)$ runs M_1 and M_2 in 'parallel' on a string w.

In the end, the final state (r_1, r_2) 'knows' if $w \in L_1$ (via $r_1 \in F_1$?) and if $w \in L_2$ (via $r_2 \in F_2$?)

The accepting states F_3 of M_3 are such that $w \in L(M_3)$ if and only if $w \in L_1$ or $w \in L_2$, for: $F_3 = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

9/19/2013

Concatenation of L₁ and L₂

Definition: $L_1 \bullet L_2 = \{ xy \mid x \in L_1 \text{ and } y \in L_2 \}$

Example: $\{a,b\} \bullet \{0,11\} = \{a0,a11,b0,b11\}$

<u>Theorem 1.13</u>: If L_1 and L_2 are regular langues, then so is $L_1 \bullet L_2$. (The regular languages are 'closed' under concatenation.)

Proving Concatenation Thm.

Consider the concatenation: {1,01,11,001,011,...} • {0,000,00000,...} (That is: the bit strings that end with a "1", followed by an odd number of 0's.)

Problem is: given a string w, how does the automaton know where the L_1 part stops and the L_2 substring starts?

We need an M with 'lucky guesses'.

9/19/2013