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CSE1710  
Week 05, Lecture 09 

Fall 2013    Tuesday, Oct 8, 2013 
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Big Picture 
The assigned reading was for today: 

•  Software Engineering sec 2.3 

•  Risk Mitigation Early Exposure; sec 2.3.1, pp. 71 

•  Handling Constants; sec 2.3.2, pp. 71-72 

• Contracts; sec 2.3.3, pp. 73-77 
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Checklist (for Today) 
What we are reinforcing with the exercises this class… 

  ability to successfully complete Ch 2 RQ’s 1-35 

  ability to successfully complete Ch 2 Ex’s 2.1-2.22 

This is the final lecture on Chapter 2!   
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Checklist (for next time, Lecture 10) 
What you should be doing to prepare for what comes next… 

  read section 3.1 “Anatomy of an API” 

  review Ch 3 KC’s 1-6 

  do Ch 3 RQ’s 1-13 

  do Ch 3 Ex’s 3.1-3.11 

 

The next three lectures are on topics related to Chapter 3. 
Final lecture on Chapter 3 is Thursday, Oct 17. 
Written Term Test on Chapters 1-3 is scheduled for Tues Oct 29 
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Here  is  a  question  -om  last  year’s  final  exam  
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RQ2.28 Can the main class be the culprit when a runtime 
error occurs in a component? 
 

 
Before answering this, let’s discuss, more generally, how 
do we determine who is the culprit when runtime errors 
occur. 

And while we’re at it, let’s review the concept of a runtime 
error. 
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RQ What are the three categories of errors?   
Briefly describe each one and provide an example.   
Identify how each type of error is triggered. 

 

1.  ____________________ 
 

2.  ____________________ 
 

3.  ____________________ 

From this exercise, you should now have a clear idea of 
what is meant by a runtime error. 
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What does the VM do when a program crashes or has a bug?!

  for crashes 
  VM identifies where the problem occurs in the stack trace 

  for bugs 
  VM will not realize that there is a bug, so it cannot  possibly flag them 

  debugging  
  you (not the VM) need to determine why the program produced an incorrect 

result  
  may need to trace the entire program 
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So what is the difference between a bug and other types of errors?!

  a bug 
  depends on some notion of what correct output looks like 

  compile-time error 
  compiler has a problem with the syntax 
  need to understand compiler’s error message 

  run-time error 
  VM had a problem running the byte code 
  need to understand stack trace 
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Brief Recap of Runtime Errors 

•  Runtime errors happen while the program is running.  
The program abruptly and unexpectedly stops (aka 
CRASH). 

•  The VM triggers runtime errors 

•  Runtime errors are different from compilation errors and 
from logic errors. 

•  Just because an app is free of runtime errors, it still 
might have errors. 
•  runtime-error free ≠ error free  
•  there still may be logic errors! 
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RQ Who is the culprit when runtime errors occur? 

To answer this, you might ask  
who are the players? 
what are their responsibilities and expectations? 
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Responsibilities and Expectations 
!!! KEY THING TO KEEP IN MIND !!! 

Responsibilities and expectations in the client-implementer 
software domain 

are NOT THE SAME as 

Responsibilities and expectations in everyday life (as 
encoded into ethics, law) 

 

You need to “suspend” your intrinsically-held ideas about 
justice in order to “get” the concepts about contracts 
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Illustration 
Who  is  to  blame?  Kenya  Pet:oleum  Company?  The  Kenyan  
authorities?  The  slum  dwellers?  
Shared  blame?  
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Responsibilities and Expectations 
Expectations: 
  the client  

  needs to ensure the precondition is met 
  the implementer  

  needs to ensure the postcondition is met 
 

Responsibilities: 
 are all-or-nothing 
 there is no such thing as sharing the blame 
 the culprit is either the client OR the implementer 
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Expectations 
 
 
 
 

potentially throws an exception!!! 

does not throw an exception!!! 
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Responsibilities 
Case 1: the implementer does not throw an exception 
e.g., ToolBox.repeat(10, ‘c’); 
 
 
 
 

Outcome Who is the Culprit? 

No crash 
[component behaviour is as 
specified] 

client met the preconditions?  
n/a – correct outcome, no one is a culprit 
client did not meet the preconditions?  
just dumb luck – client should not expect this 

No crash 
[component behaviour is NOT as 
specified] 

client met the preconditions?  
implementer’s fault 
client did not meet the preconditions?  
client’s fault* 

Crash! 
(component behaviour is NOT as 
specified; the implementer threw 
an exception) 

client met the preconditions?  
implementer’s fault 
client did not meet the preconditions?  
client’s fault* 

*note:  the  implementer  did  not  meet  its  responsibilities,  but  it  is  excused  because  of  the  client  
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Responsibilities 
Case 2: the implementer may potentially throw an exception 
e.g., ToolBox.getBMI(200,“6’1”); 
 
 
 
 

Outcome Who is the Culprit? 

No crash 
[component behaviour is as 
specified] 

client met the preconditions?  
n/a – correct outcome, no one is a culprit 
client did not meet the preconditions?  
just dumb luck – client should not expect this 

Crash! 
[component behaviour is as 
specified] 

client met the preconditions?  
n/a – correct outcome, no one is a culprit 
client did not meet the preconditions?  
just dumb luck – client should not expect this 

No crash 
[component behaviour is NOT as 
specified] 

client met the preconditions?  
implementer’s fault 
client did not meet the preconditions?  
client’s fault* 

Crash! 
[component behaviour is NOT as 
specified] 
 

client met the preconditions?  
implementer’s fault 
client did not meet the preconditions?  
client’s fault* 
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RQ2.28 Can the main class be the culprit when a runtime 
error occurs in a component? 
 

 
After all of the background discussion, now answer!!! 
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Though Questions 

 
Give an example of a scenario where a false precondition does not 
cause the program to crash. 

 

Why is this scenario dangerous? 
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What are the key concepts about Software Engineering?!

  it is study of software projects and their progress; guidelines for creating 
sw 
  mitigating risk 
  enhancing readability 
  defining software correctness  
  long-term objective: to validate correctness automatically 

  Software: Development vs Production 
  development: used in controlled environment (developers, testers, QA) 
  revenue possibly down the line, problems identified and fixed 

  production: sw goes “live” (released to public, paying customers) 
  revenue now, problems are costly (money, reputation) 

  “Risk Mitigation by Early Exposure” is a key principle 
  we cannot avoid risk altogether, but we can manage it 
  If there is a risk in doing something during software development, confront it 

as early as possible.  22 

RQ2.30-2.31"
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Give a concrete example of RMBEE.!
  converting the type of a value is risky 
  e.g., converting a double to an int may result in data loss 
  strategy for this: check for (and disallow) this at compilation time rather 

than at runtime 
  Java mitigates this risk by checking type compatibility at compile time (which 

refuse to compile if there is a violation) rather than leaving it for run time 

  the Java compiler turns a potential logic error (like assigning a real value 
to an int variable) to a compile-time error.  

  The risk of truncating the real value is exposed early. 
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RQ2.30-2.31"
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RQ What are magic numbers? Should they be avoided? 
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RQ If magic numbers are to be avoided, why shouldn’t I 
just use a variable? 
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RQ2.32 
Explain how the final keyword enables us to eliminate 
magic numbers. 
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Explain how the final keyword enables us to eliminate magic 
numbers?!

  literals embedded in expressions or as parameters are magic numbers 
  you used a literal because: 
  some particular value is needed  
  that particular value is pre-defined and unchanging 

 magic numbers should be avoided 

  use variables instead of magic numbers?  somewhat dangerous! some 
other person can come along and futz with your code! can introduce 
logic errors. 

  how do you enforce that the value is predefined and not able to change? 
  use the keyword final before the declaration. 

RQ2.32"


