
1	

1

Click to edit Master text styles
Second level

Third level
Fourth level

Fifth level

CSE1710
Week 05, Lecture 09

Fall 2013  Tuesday, Oct 8, 2013

2

Big Picture
The assigned reading was for today:

•  Software Engineering sec 2.3

•  Risk Mitigation Early Exposure; sec 2.3.1, pp. 71

•  Handling Constants; sec 2.3.2, pp. 71-72

• Contracts; sec 2.3.3, pp. 73-77

2	

3

Checklist (for Today)
What we are reinforcing with the exercises this class…

  ability to successfully complete Ch 2 RQ’s 1-35

  ability to successfully complete Ch 2 Ex’s 2.1-2.22

This is the final lecture on Chapter 2!

4

Checklist (for next time, Lecture 10)
What you should be doing to prepare for what comes next…

  read section 3.1 “Anatomy of an API”

  review Ch 3 KC’s 1-6

  do Ch 3 RQ’s 1-13

  do Ch 3 Ex’s 3.1-3.11

The next three lectures are on topics related to Chapter 3.
Final lecture on Chapter 3 is Thursday, Oct 17.
Written Term Test on Chapters 1-3 is scheduled for Tues Oct 29

3	

5

Here is a question -om last year’s final exam

6

4	

7

RQ2.28 Can the main class be the culprit when a runtime
error occurs in a component?

Before answering this, let’s discuss, more generally, how
do we determine who is the culprit when runtime errors
occur.

And while we’re at it, let’s review the concept of a runtime
error.

8

RQ What are the three categories of errors?
Briefly describe each one and provide an example.
Identify how each type of error is triggered.

1.  ____________________

2.  ____________________

3.  ____________________

From this exercise, you should now have a clear idea of
what is meant by a runtime error.

5	

9

What does the VM do when a program crashes or has a bug?!

  for crashes
  VM identifies where the problem occurs in the stack trace

  for bugs
  VM will not realize that there is a bug, so it cannot possibly flag them

  debugging
  you (not the VM) need to determine why the program produced an incorrect

result
  may need to trace the entire program

9

RQ2.25"

10

So what is the difference between a bug and other types of errors?!

  a bug
  depends on some notion of what correct output looks like

  compile-time error
  compiler has a problem with the syntax
  need to understand compiler’s error message

  run-time error
  VM had a problem running the byte code
  need to understand stack trace

10

RQ2.26"

6	

11

Brief Recap of Runtime Errors

•  Runtime errors happen while the program is running.
The program abruptly and unexpectedly stops (aka
CRASH).

•  The VM triggers runtime errors

•  Runtime errors are different from compilation errors and
from logic errors.

•  Just because an app is free of runtime errors, it still
might have errors.
•  runtime-error free ≠ error free
•  there still may be logic errors!

12

RQ Who is the culprit when runtime errors occur?

To answer this, you might ask
who are the players?
what are their responsibilities and expectations?

7	

13

Responsibilities and Expectations
!!! KEY THING TO KEEP IN MIND !!!

Responsibilities and expectations in the client-implementer
software domain

are NOT THE SAME as

Responsibilities and expectations in everyday life (as
encoded into ethics, law)

You need to “suspend” your intrinsically-held ideas about
justice in order to “get” the concepts about contracts

14

Illustration
Who is to blame? Kenya Pet:oleum Company? The Kenyan
authorities? The slum dwellers?
Shared blame?

8	

15

Responsibilities and Expectations
Expectations:
  the client

  needs to ensure the precondition is met
  the implementer

  needs to ensure the postcondition is met

Responsibilities:
 are all-or-nothing
 there is no such thing as sharing the blame
 the culprit is either the client OR the implementer

16

Expectations

potentially throws an exception!!!

does not throw an exception!!!

9	

17

Responsibilities
Case 1: the implementer does not throw an exception
e.g., ToolBox.repeat(10, ‘c’);

Outcome Who is the Culprit?

No crash
[component behaviour is as
specified]

client met the preconditions?
n/a – correct outcome, no one is a culprit
client did not meet the preconditions?
just dumb luck – client should not expect this

No crash
[component behaviour is NOT as
specified]

client met the preconditions?
implementer’s fault
client did not meet the preconditions?
client’s fault*

Crash!
(component behaviour is NOT as
specified; the implementer threw
an exception)

client met the preconditions?
implementer’s fault
client did not meet the preconditions?
client’s fault*

*note: the implementer did not meet its responsibilities, but it is excused because of the client

18

Responsibilities
Case 2: the implementer may potentially throw an exception
e.g., ToolBox.getBMI(200,“6’1”);

Outcome Who is the Culprit?

No crash
[component behaviour is as
specified]

client met the preconditions?
n/a – correct outcome, no one is a culprit
client did not meet the preconditions?
just dumb luck – client should not expect this

Crash!
[component behaviour is as
specified]

client met the preconditions?
n/a – correct outcome, no one is a culprit
client did not meet the preconditions?
just dumb luck – client should not expect this

No crash
[component behaviour is NOT as
specified]

client met the preconditions?
implementer’s fault
client did not meet the preconditions?
client’s fault*

Crash!
[component behaviour is NOT as
specified]

client met the preconditions?
implementer’s fault
client did not meet the preconditions?
client’s fault*

10	

19

20

RQ2.28 Can the main class be the culprit when a runtime
error occurs in a component?

After all of the background discussion, now answer!!!

11	

21

Though Questions

Give an example of a scenario where a false precondition does not
cause the program to crash.

Why is this scenario dangerous?

22

What are the key concepts about Software Engineering?!

  it is study of software projects and their progress; guidelines for creating
sw
  mitigating risk
  enhancing readability
  defining software correctness
  long-term objective: to validate correctness automatically

  Software: Development vs Production
  development: used in controlled environment (developers, testers, QA)
  revenue possibly down the line, problems identified and fixed

  production: sw goes “live” (released to public, paying customers)
  revenue now, problems are costly (money, reputation)

  “Risk Mitigation by Early Exposure” is a key principle
  we cannot avoid risk altogether, but we can manage it
  If there is a risk in doing something during software development, confront it

as early as possible. 22

RQ2.30-2.31"

12	

23

Give a concrete example of RMBEE.!
  converting the type of a value is risky
  e.g., converting a double to an int may result in data loss
  strategy for this: check for (and disallow) this at compilation time rather

than at runtime
  Java mitigates this risk by checking type compatibility at compile time (which

refuse to compile if there is a violation) rather than leaving it for run time

  the Java compiler turns a potential logic error (like assigning a real value
to an int variable) to a compile-time error.

  The risk of truncating the real value is exposed early.

23

RQ2.30-2.31"

24

RQ What are magic numbers? Should they be avoided?

13	

25

RQ If magic numbers are to be avoided, why shouldn’t I
just use a variable?

26

RQ2.32 
Explain how the final keyword enables us to eliminate
magic numbers.

14	

27

28

Explain how the final keyword enables us to eliminate magic
numbers?!

  literals embedded in expressions or as parameters are magic numbers
  you used a literal because:
  some particular value is needed
  that particular value is pre-defined and unchanging

 magic numbers should be avoided

  use variables instead of magic numbers? somewhat dangerous! some
other person can come along and futz with your code! can introduce
logic errors.

  how do you enforce that the value is predefined and not able to change?
  use the keyword final before the declaration.

RQ2.32"

