
More Data Structures (Part 2)

Queues

1

Queue

2

Queue

3

back front

Queue Operations

4

 classically, queues only support two operations
1. enqueue
 add to the back of the queue

2. dequeue
 remove from the front of the queue

Queue Optional Operations
 optional operations

1. size
 number of elements in the queue

2. isEmpty
 is the queue empty?

3. peek
 get the front element (without removing it)

4. search
 find the position of the element in the queue

5. isFull
 is the queue full? (for queues with finite capacity)

6. capacity
 total number of elements the queue can hold (for queues with

finite capacity)
5

Enqueue
1. q.enqueue("A")
2. q.enqueue("B")
3. q.enqueue("C")
4. q.enqueue("D")
5. q.enqueue("E")

6

A B C D E

B F B B B

B

B

Dequeue
1. String s = q.dequeue()

7

A B C D E

F B

Dequeue
1. String s = q.dequeue()
2. s = q.dequeue()

8

B C D E

F B

Dequeue
1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()

9

C D E

F B

Dequeue
1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()

10

D E

F B

Dequeue
1. String s = q.dequeue()
2. s = q.dequeue()
3. s = q.dequeue()
4. s = q.dequeue()
5. s = q.dequeue()

11

E

F B

FIFO
 queue is a First-In-First-Out (FIFO) data structure
 the first element enqueued in the queue is the first element

that can be accessed from the queue

12

Implementation with LinkedList
 a linked list can be used to efficiently implement a

queue as long as the linked list keeps a reference to the
last node in the list
 required for enqueue

 the head of the list becomes the front of the queue
 removing (dequeue) from the head of a linked list requires

O(1) time
 adding (enqueue) to the end of a linked list requires O(1)

time if a reference to the last node is available

 java.util.LinkedList is a doubly linked list that holds a
reference to the last node

13

14

public class Queue<E> {

 private LinkedList<E> q;

 public Queue() {

 this.q = new LinkedList<E>();

 }

 public enqueue(E element) {

 this.q.addLast(element);

 }

 public E dequeue() {

 return this.q.removeFirst();

 }

}

Implementation with LinkedList
 note that there is no need to implement your own

queue as there is an existing interface
 the interface does not use the names enqueue and dequeue

however

15

java.util.Queue
public interface Queue<E>
extends Collection<E>

 plus other methods
 http://docs.oracle.com/javase/7/docs/api/java/util/Queue.

html

16

boolean add(E e)

Inserts the specified element into this queue...
E remove()

Retrieves and removes the head of this queue...
E peek()

Retrieves, but does not remove, the head of this queue...

http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html

java.util.Queue
 LinkedList implements Queue so if you ever need a

queue you can simply use:
 e.g. for a queue of strings

Queue<String> q = new LinkedList<String>();

17

Queue applications
 queues are useful whenever you need to hold elements

in their order of arrival
 serving requests of a single resource

 printer queue
 disk queue
 CPU queue
 web server

18

Robotics example
 in robotics, the path planning problem is
 given a map of the environment, find a path between the

starting point of the robot and a goal location that does not
pass through any obstacles

 one approach is to use a grid for the map

19

Grid-based map

20

start

goal

Wave-front planner
 the wave-front planner finds a path between a start

and goal point in spaces represented as a grid where
 free space is labeled with a 0
 obstacles are labeled with a 1
 the goal is labeled with a 2
 the start is known

21

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner
 starting with the goal cell

label L = 2

while start cell is unlabelled {

 for each cell C with label L {

 for each cell Z connected to C with label 0 {

 label Z with L+1

 }

 }

 L = L + 1

}

22

Wave-front planner

23

0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

24

0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

12/5/2013 25

 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 2
0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 goal

Wave-front planner

12/5/2013 26

 0 0 0 14 13 12 11 10 9 8 7 6 5 4 3 2
0 0 0 0 14 13 12 11 10 9 8 7 6 5 4 3
0 0 1 1 0 14 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

12/5/2013 27

 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1
20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1
0 20 1 1 17 16 17 18 19 20 0 0 1 1 0 0
1 1 1 1 18 17 18 19 20 0 0 0 1 1 0 0
1 1 1 1 19 18 19 20 0 0 0 0 1 1 0 0
0 0 1 1 20 19 20 0 0 0 0 0 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start

Wave-front planner

12/5/2013 28

 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1
20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1
21 20 1 1 17 16 17 18 19 20 21 22 1 1 37 38
1 1 1 1 18 17 18 19 20 21 22 23 1 1 36 37
1 1 1 1 19 18 19 20 21 22 23 24 1 1 35 36
0 0 1 1 20 19 20 21 22 23 24 25 1 1 34 35
0 0 1 1 1 1 1 1 23 24 1 1 1 1 33 34
0 0 1 1 1 1 1 1 24 25 1 1 1 1 32 33
0 0 1 1 29 28 27 26 25 26 27 28 29 30 31 32
0 0 1 1 30 29 28 27 26 27 28 29 30 31 32 33
0 0 1 1 1 1 1 1 1 1 1 1 1 1 33 34
0 49 1 1 1 1 1 1 1 1 1 1 1 1 34 35
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 36
* 49 48 47 46 45 44 43 42 41 40 39 38 37 36 37 start

Wave-front planner

12/5/2013 29

 to generate a path starting from the start point

L = start point label

while not at the goal {

 move to any connected cell with label L-1

 L = L-1

}

Wave-front planner

12/5/2013 30

 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3
19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1
20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1
21 20 1 1 17 16 17 18 19 20 21 22 1 1 37 38
1 1 1 1 18 17 18 19 20 21 22 23 1 1 36 37
1 1 1 1 19 18 19 20 21 22 23 24 1 1 35 36
0 0 1 1 20 19 20 21 22 23 24 25 1 1 34 35
0 0 1 1 1 1 1 1 23 24 1 1 1 1 33 34
0 0 1 1 1 1 1 1 24 25 1 1 1 1 32 33
0 0 1 1 29 28 27 26 25 26 27 28 29 30 31 32
0 0 1 1 30 29 28 27 26 27 28 29 30 31 32 33
0 50 1 1 1 1 1 1 1 1 1 1 1 1 33 34
50 49 1 1 1 1 1 1 1 1 1 1 1 1 34 35
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 36
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 37 start

Breadth-first search
 the wave-front planner is actually a classic computer

science algorithm called breadth-first search

 visiting every node of a tree using breadth-first search
results in visiting nodes in order of their level in the
tree

31

50

27 73

8 44 83

73 93

BFS: 50

50

27 73

8 44 83

73 93

BFS: 50, 27, 73

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73, 93

Breadth-first search algorithm

Q.enqueue(root node)

while Q is not empty {

 n = Q.dequeue()

 if n.left != null {

 Q.enqueue(n.left)

 }

 if n.right != null {

 Q.enqueue(n.right)

 }

}

36

50

27 73

8 44 83

73 93

BFS:

50

50

27 73

8 44 83

73 93

BFS: 50

27 73
dequeue 50,
enqueue left and right

50

27 73

8 44 83

73 93

BFS: 50, 27

73 8
dequeue 27,
enqueue left and right 44

50

27 73

8 44 83

73 93

BFS: 50, 27, 73

8 44
dequeue 73,
enqueue right 83

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8

44 83
dequeue 8

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44

83
dequeue 44

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83

73
dequeue 83,
enqueue left and right 93

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73

93
dequeue 73

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73, 93
dequeue 93

50

27 73

8 44 83

73 93

BFS: 50, 27, 73, 8, 44, 83, 73, 93
queue empty

Summary

47

Major Topics
1. static features (utility classes)
2. non-static features
3. mixing static and non-static features
4. aggregation and composition
5. inheritance
6. graphical user interfaces
7. recursion
8. data structures

48

Inheritance

 means
is-a
or

is-substitutable-for

49

50

... Komondor BloodHound

PureBreed Mix

Dog

Object

Dog is-a Object

PureBreed is-a Dog
PureBreed is-a Object

Komondor is-a PureBreed
Komondor is-a Dog
Komondor is-a Object

What is a Subclass?
 a subclass looks like a new class that has the same API

as its superclass with perhaps some additional
methods and attributes

 inheritance does more than copy the API of the
superclass
 the derived class contains a subobject of the parent class
 the superclass subobject needs to be constructed (just like a

regular object)
 the mechanism to perform the construction of the superclass

subobject is to call the superclass constructor

51

52

Mix object

Dog object

Object object

size 1

energy 10

breeds 1000

Mix mutt = new Mix(1, 10);

1. Mix constructor starts running
• creates new Dog subobject by invoking

the Dog constructor
2. Dog constructor starts running
• creates new Object subobject

by (silently) invoking the
Object constructor

3. Object constructor runs
• sets size and energy

• creates a new empty ArrayList and
assigns it to breeds

Strength of a Precondition
 to strengthen a precondition means to make the

precondition more restrictive

 // Dog setEnergy

 // 1. no precondition

 // 2. 1 <= energy

 // 3. 1 <= energy <= 10

 public void setEnergy(int energy)

 { ... }

53

weakest precondition

strongest precondition

Preconditions on Overridden Methods
 a subclass can change a precondition on a method but

it must not strengthen the precondition
 a subclass that strengthens a precondition is saying that it

cannot do everything its superclass can do

54

// Dog setEnergy
// assume non-final
// @pre. none

public
void setEnergy(int nrg)
{ // ... }

// Mix setEnergy
// bad : strengthen precond.
// @pre. 1 <= nrg <= 10

public
void setEnergy(int nrg)
{
 if (nrg < 1 || nrg > 10)
 { // throws exception }
 // ...
}

 client code written for Dogs now fails when given a
Mix

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

55

// client code that sets a Dog's energy to zero
public void walk(Dog d)
{
 d.setEnergy(0);
}

Strength of a Postcondition
 to strengthen a postcondition means to make the

postcondition more restrictive

 // Dog getSize

 // 1. no postcondition

 // 2. 1 <= this.size

 // 3. 1 <= this.size <= 10

 public int getSize()

 { ... }

56

weakest postcondition

strongest postcondition

Postconditions on Overridden Methods
 a subclass can change a postcondition on a method but

it must not weaken the postcondition
 a subclass that weakens a postcondition is saying that it

cannot do everything its superclass can do

57

// Dog getSize
//
// @post. 1 <= size <= 10

public
int getSize()
{ // ... }

// Dogzilla getSize
// bad : weaken postcond.
// @post. 1 <= size

public
int getSize()
{ // ... }

Dogzilla: a made-up breed of dog
that has no upper limit on its size

 client code written for Dogs can now fail when given a
Dogzilla

 remember: a subclass must be able to do everything its
ancestor classes can do; otherwise, clients will be
(unpleasantly) surprised

58

// client code that assumes Dog size <= 10
public String sizeToString(Dog d)
{
 int sz = d.getSize();
 String result = "";
 if (sz < 4) result = "small";
 else if (sz < 7) result = "medium";
 else if (sz <= 10) result = "large";
 return result;
}

Exceptions and Inheritance
 a method that claims to throw an exception of type X is

allowed to throw any exception type that is a subclass
of X
 this makes sense because exceptions are objects and

subclass objects are substitutable for ancestor classes

// in Dog
public void someDogMethod() throws DogException

{
 // can throw a DogException, BadSizeException,
 // NoFoodException, or BadDogException

}

59

 a method that overrides a superclass method that
claims to throw an exception of type X must also throw
an exception of type X or a subclass of X
 remember: a subclass promises to do everything its

superclass does; if the superclass method claims to throw an
exception then the subclass must also

// in Mix

@Override
public void someDogMethod() throws DogException
{

 // ...
}

60

checked exception

Which are Legal?
 in Mix

@Override

public void someDogMethod() throws BadDogException

@Override

public void someDogMethod() throws Exception

@Override

public void someDogMethod()

@Override

public void someDogMethod()
 throws DogException, IllegalArgumentException

61

technically legal, but don't do this

Abstract Classes
 abstract classes appear when there are common

attributes and methods that all subclasses share
 often, only the subclasses will have enough

information to implement the methods
 these methods are marked abstract in the parent class to

indicate that subclasses are responsible for providing the
implementation

62

Static Features and Inheritance
 non-private static attributes are inherited
 but there is still only one copy of the attribute and it is in

the parent class
 non-private static methods are inherited
 but they cannot be overridden, they can only be hidden

63

Interfaces
 in Java an interface is a reference type (similar to a

class)
 an interface says what methods an object must have

and what the methods are supposed to do
 i.e., an interface is an API

 unlike inheritance, a class may implement as many

interfaces as needed

64

Model-View-Controller
 model
 represents state of the application and the rules that govern

access to and updates of state
 view
 presents the user with a sensory (visual, audio, haptic)

representation of the model state
 a user interface element (the user interface for simple

applications)
 controller
 processes and responds to events (such as user actions)

from the view and translates them to model method calls

65

66

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r
 actionPerformed

getUserValue

C
a
l
c
M
o
d
e
l
 sum

2

1

3

setCalcValue 5

getCalcValue 4

Recursion
 a method that calls itself is called a recursive method
 a recursive method solves a problem by repeatedly

reducing the problem so that a base case can be
reached

 printIt("*", 5)

 printIt("", 4)

 **printIt("*", 3)

 ***printIt("*", 2)

 ****printIt("*", 1)

 *****printIt("*", 0) base case

67

Notice that the number of times
the string is printed decreases
after each recursive call to printIt

Notice that the base case is
eventually reached.

Proving Correctness and Termination
 to show that a recursive method accomplishes its goal

you must prove:
1. that the base case(s) and the recursive calls are correct
2. that the method terminates

68

Proving Correctness
 to prove correctness:

1. prove that each base case is correct
2. assume that the recursive invocation is correct and then

prove that each recursive case is correct

69

Correctness of printItToo
1. (prove the base case) If n == 0 nothing is printed;

thus the base case is correct.
2. Assume that printItToo(s, n-1) prints the string

s exactly(n – 1) times. Then the recursive case
prints the string s exactly(n – 1)+1 = n times;
thus the recursive case is correct.

70

Proving Termination
 to prove that a recursive method terminates:

1. define the size of a method invocation; the size must be a
non-negative integer number

2. prove that each recursive invocation has a smaller size
than the original invocation

71

Termination of printIt
1. printIt(s, n) prints n copies of the string s;

define the size of printIt(s, n) to be n
2. The size of the recursive invocation

 printIt(s, n-1) is n-1 (by definition) which is
smaller than the original size n.

72

Recurrence Relation
 analyzing the runtime of an algorithm often leads to a

recurrence relation T(n), e.g.,
 T(n) = 2T(n / 2) + O(n)
 T(n) = T(n - 1) + T(n – 2)

 solving the recurrence can sometimes be done by

substitution

73

Solving the Recurrence Relation
T(n) → 2T(n/2) + O(n) T(n) approaches...

 ≈ 2T(n/2) + n
 = 2[2T(n/4) + n/2] + n
 = 4T(n/4) + 2n
 = 4[2T(n/8) + n/4] + 2n
 = 8T(n/8) + 3n
 = 8[2T(n/16) + n/8] + 3n
 = 16T(n/16) + 4n
 = 2kT(n/2k) + kn

74

Solving the Recurrence Relation
T(n) = 2kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1
 if we can substitute T(1) into the right-hand side of T(n) we

might be able to solve the recurrence

n/2k = 1 ⇒ 2k = n ⇒ k = log(n)

75

Data Structures
 recursive
 linked list
 binary tree

 stack
 queue

76

	More Data Structures (Part 2)
	Queue
	Queue
	Queue Operations
	Queue Optional Operations
	Enqueue
	Dequeue
	Dequeue
	Dequeue
	Dequeue
	Dequeue
	FIFO
	Implementation with LinkedList
	Slide Number 14
	Implementation with LinkedList
	java.util.Queue
	java.util.Queue
	Queue applications
	Robotics example
	Grid-based map
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Wave-front planner
	Breadth-first search
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Breadth-first search algorithm
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Summary
	Major Topics
	Inheritance
	Slide Number 50
	What is a Subclass?
	Slide Number 52
	Strength of a Precondition
	Preconditions on Overridden Methods
	Slide Number 55
	Strength of a Postcondition
	Postconditions on Overridden Methods
	Slide Number 58
	Exceptions and Inheritance
	Slide Number 60
	Which are Legal?
	Abstract Classes
	Static Features and Inheritance
	Interfaces
	Model-View-Controller
	Slide Number 66
	Recursion
	Proving Correctness and Termination
	Proving Correctness
	Correctness of printItToo
	Proving Termination
	Termination of printIt
	Recurrence Relation
	Solving the Recurrence Relation
	Solving the Recurrence Relation
	Data Structures

