
More Data Structures (Part 2) 

Queues 
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Queue Operations 
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 classically, queues only support two operations 
1. enqueue 
 add to the back of the queue 

2. dequeue 
 remove from the front of the queue 

 



Queue Optional Operations 
 optional operations 

1. size 
 number of elements in the queue 

2. isEmpty 
 is the queue empty? 

3. peek 
 get the front element (without removing it) 

4. search 
 find the position of the element in the queue 

5. isFull 
 is the queue full? (for queues with finite capacity) 

6. capacity 
 total number of elements the queue can hold (for queues with 

finite capacity) 
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Enqueue 
1.  q.enqueue("A")  
2.  q.enqueue("B")  
3.  q.enqueue("C")  
4.  q.enqueue("D")  
5.  q.enqueue("E")  
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Dequeue 
1.  String s = q.dequeue()  
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Dequeue 
1.  String s = q.dequeue()  
2.  s = q.dequeue()  
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Dequeue 
1.  String s = q.dequeue()  
2.  s = q.dequeue()  
3.  s = q.dequeue()  
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Dequeue 
1.  String s = q.dequeue()  
2.  s = q.dequeue() 
3.  s = q.dequeue()  
4.  s = q.dequeue()  
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Dequeue 
1.  String s = q.dequeue()  
2.  s = q.dequeue() 
3.  s = q.dequeue()  
4.  s = q.dequeue()  
5.  s = q.dequeue()  
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FIFO 
 queue is a First-In-First-Out (FIFO) data structure 
 the first element enqueued in the queue is the first element 

that can be accessed from the queue 
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Implementation with LinkedList 
 a linked list can be used to efficiently implement a 

queue as long as the linked list keeps a reference to the 
last node in the list 
 required for enqueue 

 the head of the list becomes the front of the queue 
 removing (dequeue) from the head of a linked list requires 

O(1) time 
 adding (enqueue) to the end of a linked list requires O(1) 

time if a reference to the last node is available 
 

 java.util.LinkedList is a doubly linked list that holds a 
reference to the last node 
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public class Queue<E> { 

  private LinkedList<E> q; 

 

  public Queue() { 

    this.q = new LinkedList<E>(); 

  } 

 

  public enqueue(E element) { 

    this.q.addLast(element); 

  } 

 

  public E dequeue() { 

    return this.q.removeFirst(); 

  } 

} 



Implementation with LinkedList 
 note that there is no need to implement your own 

queue as there is an existing interface 
 the interface does not use the names enqueue and dequeue 

however 
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java.util.Queue 
public interface Queue<E> 
extends Collection<E> 

 
 
 
 
 
 

 plus other methods 
 http://docs.oracle.com/javase/7/docs/api/java/util/Queue.

html 
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boolean add(E e) 

Inserts the specified element into this queue... 
E remove() 

Retrieves and removes the head of this queue... 
E peek() 

Retrieves, but does not remove, the head of this queue... 

http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html
http://docs.oracle.com/javase/7/docs/api/java/util/Queue.html


java.util.Queue 
  LinkedList implements Queue so if you ever need a 

queue you can simply use: 
 e.g. for a queue of strings 
 

Queue<String> q = new LinkedList<String>(); 
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Queue applications 
 queues are useful whenever you need to hold elements 

in their order of arrival 
 serving requests of a single resource 

 printer queue 
 disk queue 
 CPU queue 
 web server 
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Robotics example 
 in robotics, the path planning problem is 
 given a map of the environment, find a path between the 

starting point of the robot and a goal location that does not 
pass through any obstacles 
 

 one approach is to use a grid for the map 
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Grid-based map 
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Wave-front planner 
 the wave-front planner finds a path between a start 

and goal point in spaces represented as a grid where 
 free space is labeled with a 0 
 obstacles are labeled with a 1 
 the goal is labeled with a 2 
 the start is known 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start 



Wave-front planner 
 starting with the goal cell 

 
label L = 2 

while start cell is unlabelled { 

  for each cell C with label L { 

    for each cell Z connected to C with label 0 { 

      label Z with L+1 

    } 

  } 

  L = L + 1 

} 
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Wave-front planner 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start 



Wave-front planner 
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0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 3 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start 



Wave-front planner 
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 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 2 
0 0 0 0 0 0 0 0 0 0 0 0 0 5 4 3 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 goal 



Wave-front planner 

12/5/2013 26 

 0 0 0 14 13 12 11 10 9 8 7 6 5 4 3 2 
0 0 0 0 14 13 12 11 10 9 8 7 6 5 4 3 
0 0 1 1 0 14 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start 



Wave-front planner 
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 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1 
20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1 
0 20 1 1 17 16 17 18 19 20 0 0 1 1 0 0 
1 1 1 1 18 17 18 19 20 0 0 0 1 1 0 0 
1 1 1 1 19 18 19 20 0 0 0 0 1 1 0 0 
0 0 1 1 20 19 20 0 0 0 0 0 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 0 0 1 1 1 1 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 start 



Wave-front planner 
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 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1 
20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1 
21 20 1 1 17 16 17 18 19 20 21 22 1 1 37 38 
1 1 1 1 18 17 18 19 20 21 22 23 1 1 36 37 
1 1 1 1 19 18 19 20 21 22 23 24 1 1 35 36 
0 0 1 1 20 19 20 21 22 23 24 25 1 1 34 35 
0 0 1 1 1 1 1 1 23 24 1 1 1 1 33 34 
0 0 1 1 1 1 1 1 24 25 1 1 1 1 32 33 
0 0 1 1 29 28 27 26 25 26 27 28 29 30 31 32 
0 0 1 1 30 29 28 27 26 27 28 29 30 31 32 33 
0 0 1 1 1 1 1 1 1 1 1 1 1 1 33 34 
0 49 1 1 1 1 1 1 1 1 1 1 1 1 34 35 
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 36 
* 49 48 47 46 45 44 43 42 41 40 39 38 37 36 37 start 



Wave-front planner 
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 to generate a path starting from the start point 
 

L = start point label 

while not at the goal { 

 move to any connected cell with label L-1 

 L = L-1 

} 



Wave-front planner 
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 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 
18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 
19 18 1 1 15 14 1 1 1 1 1 1 1 1 1 1 
20 19 1 1 16 15 1 1 1 1 1 1 1 1 1 1 
21 20 1 1 17 16 17 18 19 20 21 22 1 1 37 38 
1 1 1 1 18 17 18 19 20 21 22 23 1 1 36 37 
1 1 1 1 19 18 19 20 21 22 23 24 1 1 35 36 
0 0 1 1 20 19 20 21 22 23 24 25 1 1 34 35 
0 0 1 1 1 1 1 1 23 24 1 1 1 1 33 34 
0 0 1 1 1 1 1 1 24 25 1 1 1 1 32 33 
0 0 1 1 29 28 27 26 25 26 27 28 29 30 31 32 
0 0 1 1 30 29 28 27 26 27 28 29 30 31 32 33 
0 50 1 1 1 1 1 1 1 1 1 1 1 1 33 34 
50 49 1 1 1 1 1 1 1 1 1 1 1 1 34 35 
49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 36 
50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 37 start 



Breadth-first search 
 the wave-front planner is actually a classic computer 

science algorithm called breadth-first search 
 

 visiting every node of a tree using breadth-first search 
results in visiting nodes in order of their level in the 
tree 
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50 

27 73 

8 44 83 

73 93 

BFS: 50 



50 

27 73 

8 44 83 

73 93 

BFS: 50, 27, 73 



50 

27 73 

8 44 83 

73 93 

BFS: 50, 27, 73, 8, 44, 83 



50 

27 73 

8 44 83 

73 93 

BFS: 50, 27, 73, 8, 44, 83, 73, 93 



Breadth-first search algorithm 
 

 

Q.enqueue(root node) 

while Q is not empty { 

  n = Q.dequeue() 

  if n.left != null { 

    Q.enqueue(n.left) 

  } 

  if n.right != null { 

    Q.enqueue(n.right) 

  } 

} 
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50 

27 73 

8 44 83 

73 93 

BFS:  

50 



50 

27 73 

8 44 83 

73 93 

BFS:  50 

27 73 
dequeue 50, 
enqueue left and right 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27 

73 8 
dequeue 27, 
enqueue left and right 44 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27, 73 

8 44 
dequeue 73, 
enqueue right 83 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27, 73, 8 

44 83 
dequeue 8 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27, 73, 8, 44 

83 
dequeue 44 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27, 73, 8, 44, 83 

73 
dequeue 83, 
enqueue left and right 93 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27, 73, 8, 44, 83, 73 

93 
dequeue 73 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27, 73, 8, 44, 83, 73, 93 
dequeue 93 



50 

27 73 

8 44 83 

73 93 

BFS:  50, 27, 73, 8, 44, 83, 73, 93 
queue empty 



Summary 
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Major Topics 
1. static features (utility classes) 
2. non-static features 
3. mixing static and non-static features 
4. aggregation and composition 
5. inheritance 
6. graphical user interfaces 
7. recursion 
8. data structures 

48 



Inheritance 
 
 

 means 
is-a  
or  

is-substitutable-for 

49 
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... Komondor BloodHound 

PureBreed Mix 

Dog 

Object 

Dog is-a Object 

PureBreed is-a Dog 
PureBreed is-a Object 

Komondor is-a PureBreed 
Komondor is-a Dog 
Komondor is-a Object 



What is a Subclass? 
 a subclass looks like a new class that has the same API 

as its superclass with perhaps some additional 
methods and attributes 

 inheritance does more than copy the API of the 
superclass 
 the derived class contains a subobject of the parent class 
 the superclass subobject needs to be constructed (just like a 

regular object) 
 the mechanism to perform the construction of the  superclass 

subobject is to call the superclass constructor 
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Mix object 

Dog object 

Object object 

size 1 

energy 10 

breeds 1000 

Mix mutt = new Mix(1, 10); 

1. Mix constructor starts running 
• creates new Dog subobject by invoking 

the Dog constructor 
2. Dog constructor starts running 
• creates new Object subobject 

by (silently) invoking the 
Object constructor 

3. Object constructor runs 
• sets size and energy 

• creates a new empty ArrayList and 
assigns it to breeds 



Strength of a Precondition 
 to strengthen a precondition means to make the 

precondition more restrictive 
 

 // Dog setEnergy 

 // 1. no precondition 

 // 2. 1 <= energy 

 // 3. 1 <= energy <= 10 

 public void setEnergy(int energy) 

 { ... } 
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weakest precondition 

strongest precondition 



Preconditions on Overridden Methods 
 a subclass can change a precondition on a method but 

it must not strengthen the precondition 
 a subclass that strengthens a precondition is saying that it 

cannot do everything its superclass can do 
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// Dog setEnergy 
// assume non-final 
// @pre. none 
 
public 
void setEnergy(int nrg) 
{ // ... } 

// Mix setEnergy 
// bad : strengthen precond. 
// @pre. 1 <= nrg <= 10 
 
public 
void setEnergy(int nrg) 
{ 
  if (nrg < 1 || nrg > 10) 
  { // throws exception } 
  // ... 
} 



 client code written for Dogs now fails when given a 
Mix  
 
 
 
 

 remember: a subclass must be able to do everything its 
ancestor classes can do; otherwise, clients will be 
(unpleasantly) surprised 
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// client code that sets a Dog's energy to zero 
public void walk(Dog d) 
{ 
  d.setEnergy(0); 
} 
 



Strength of a Postcondition 
 to strengthen a postcondition means to make the 

postcondition more restrictive 
 

 // Dog getSize 

 // 1. no postcondition 

 // 2. 1 <= this.size 

 // 3. 1 <= this.size <= 10 

 public int getSize() 

 { ... } 
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weakest postcondition 

strongest postcondition 



Postconditions on Overridden Methods 
 a subclass can change a postcondition on a method but 

it must not weaken the postcondition 
 a subclass that weakens a postcondition is saying that it 

cannot do everything its superclass can do 
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// Dog getSize 
// 
// @post. 1 <= size <= 10 
 
public 
int getSize() 
{ // ... } 

// Dogzilla getSize 
// bad : weaken postcond. 
// @post. 1 <= size 
 
public 
int getSize() 
{ // ... } 

Dogzilla: a made-up breed of dog 
that has no upper limit on its size 



 client code written for Dogs can now fail when given a 
Dogzilla  
 
 
 
 
 
 

 remember: a subclass must be able to do everything its 
ancestor classes can do; otherwise, clients will be 
(unpleasantly) surprised 
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// client code that assumes Dog size <= 10 
public String sizeToString(Dog d) 
{ 
  int sz = d.getSize(); 
  String result = ""; 
  if (sz < 4)        result = "small"; 
  else if (sz < 7)   result = "medium"; 
  else if (sz <= 10) result = "large"; 
  return result; 
} 
 



Exceptions and Inheritance 
 a method that claims to throw an exception of type X is 

allowed to throw any exception type that is a subclass 
of X  
 this makes sense because exceptions are objects and 

subclass objects are substitutable for ancestor classes 
 

// in Dog 
public void someDogMethod() throws DogException 

{ 
  // can throw a DogException, BadSizeException, 
  //             NoFoodException, or BadDogException 

} 
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 a method that overrides a superclass method that 
claims to throw an exception of type X must also throw 
an exception of type X or a subclass of X  
 remember: a subclass promises to do everything its 

superclass does; if the superclass method claims to throw an 
exception then the subclass must also 
 

// in Mix 

@Override 
public void someDogMethod() throws DogException 
{ 

  // ... 
} 
 

60 

checked exception 



Which are Legal? 
 in Mix  

@Override 

public void someDogMethod() throws BadDogException 
 
@Override 

public void someDogMethod() throws Exception 
 
@Override 

public void someDogMethod() 
 
@Override 

public void someDogMethod() 
      throws DogException, IllegalArgumentException 
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technically legal, but don't do this 



Abstract Classes 
 abstract classes appear when there are common 

attributes and methods that all subclasses share 
 often, only the subclasses will have enough 

information to implement the methods 
 these methods are marked abstract in the parent class to 

indicate that subclasses are responsible for providing the 
implementation 
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Static Features and Inheritance 
 non-private static attributes are inherited 
 but there is still only one copy of the attribute and it is in 

the parent class 
 non-private static methods are inherited 
 but they cannot be overridden, they can only be hidden 
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Interfaces 
 in Java an interface is a reference type (similar to a 

class) 
 an interface says what methods an object must have 

and what the methods are supposed to do 
 i.e., an interface is an API 

 
 unlike inheritance, a class may implement as many 

interfaces as needed 
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Model-View-Controller 
 model 
 represents state of the application and the rules that govern 

access to and updates of state 
 view 
 presents the user with a sensory (visual, audio, haptic) 

representation of the model state 
 a user interface element (the user interface for simple 

applications) 
 controller 
 processes and responds to events (such as user actions) 

from the view and translates them to model method calls 
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setCalcValue 5 

getCalcValue 4 



Recursion 
 a method that calls itself is called a recursive method 
 a recursive method solves a problem by repeatedly 

reducing the problem so that a base case can be 
reached 
 

 printIt("*", 5) 

 *printIt("*", 4) 

 **printIt("*", 3) 

 ***printIt("*", 2) 

 ****printIt("*", 1) 

 *****printIt("*", 0) base case 

 ***** 

67 

Notice that the number of times 
the string is printed decreases 
after each recursive call to printIt 

Notice that the base case is 
eventually reached. 



Proving Correctness and Termination 
 to show that a recursive method accomplishes its goal 

you must prove: 
1. that the base case(s) and the recursive calls are correct 
2. that the method terminates 
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Proving Correctness 
 to prove correctness: 

1. prove that each base case is correct 
2. assume that the recursive invocation is correct and then 

prove that each recursive case is correct 
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Correctness of printItToo 
1. (prove the base case) If n == 0 nothing is printed; 

thus the base case is correct. 
2. Assume that printItToo(s, n-1) prints the string 

s exactly(n – 1) times. Then the recursive case 
prints the string s exactly(n – 1)+1 = n times; 
thus the recursive case is correct. 
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Proving Termination 
 to prove that a recursive method terminates: 

1. define the size of a method invocation; the size must be a 
non-negative integer number 

2. prove that each recursive invocation has a smaller size 
than the original invocation 
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Termination of printIt 
1. printIt(s, n) prints n copies of the string s; 

define the size of printIt(s, n) to be n  
2. The size of the recursive invocation 

 printIt(s, n-1) is n-1 (by definition) which is 
smaller than the original size n. 
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Recurrence Relation 
 analyzing the runtime of an algorithm often leads to a 

recurrence relation T(n), e.g., 
 T(n) = 2T(n / 2) + O(n)  
 T(n) = T(n - 1) + T(n – 2)  

 
 solving the recurrence can sometimes be done by 

substitution 
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Solving the Recurrence Relation 
T(n) → 2T(n/2) + O(n)                 T(n) approaches... 

  ≈  2T(n/2) + n 
  = 2[ 2T(n/4) + n/2 ] + n 
  = 4T(n/4) + 2n  
  = 4[ 2T(n/8) + n/4 ] + 2n 
  = 8T(n/8) + 3n  
  = 8[ 2T(n/16) + n/8 ] + 3n 
  = 16T(n/16) + 4n  
  = 2kT(n/2k) + kn  
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Solving the Recurrence Relation 
T(n) = 2kT(n/2k) + kn  

 
 for a list of length 1 we know T(1) = 1  
 if we can substitute T(1) into the right-hand side of T(n) we 

might be able to solve the recurrence 
 

n/2k = 1  ⇒  2k = n ⇒ k = log(n) 
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Data Structures 
 recursive 
 linked list 
 binary tree 

 stack 
 queue 
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