
Recursion (Part 2)

Solving Recurrence Relations

1

Divide and Conquer
 bisection works by recursively finding which half of

the range 'plus' – 'minus' the root lies in
 each recursive call solves the same problem (tries to find

the root of the function by guessing at the midpoint of the
range)

 each recursive call solves one smaller problem because half
of the range is discarded
 bisection method is decrease and conquer

 divide and conquer algorithms typically recursively
divide a problem into several smaller sub-problems
until the sub-problems are small enough that they can
be solved directly

2

Merge Sort
 merge sort is a divide and conquer algorithm that sorts

a list of numbers by recursively splitting the list into
two halves

3

1 2 7 4 5 6 3 8

1 7 6 8 2 4 5 3

2 5 4 3 1 6 7 8

4 3 2 5 7 8 1 6

 the split lists are then merged into sorted sub-lists

4

4 3 2 5 7 8 1 6

5 2 3 4 6 1 8 7

8 6 7 1 5 2 4 3

8 4 6 1 3 7 2 5

Merging Sorted Sub-lists
 two sub-lists of length 1

5

4 3

left right

result

3 4

1 comparison
2 copies

6

LinkedList<Integer> result = new LinkedList<Integer>();

int fL = left.getFirst();

int fR = right.getFirst();

if (fL < fR) {

 result.add(fL);

 left.removeFirst();

}

else {

 result.add(fR);

 right.removeFirst();

}

if (left.isEmpty()) {

 result.addAll(right);

}

else {

 result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 2

7

4 3

left right

result

3 4

3 comparisons
4 copies

5 2

2 5

8

LinkedList<Integer> result = new LinkedList<Integer>();

while (left.size() > 0 && right.size() > 0) {

 int fL = left.getFirst();

 int fR = right.getFirst();

 if (fL < fR) {

 result.add(fL);

 left.removeFirst();

 }

 else {

 result.add(fR);

 right.removeFirst();

 }

}

if (left.isEmpty()) {

 result.addAll(right);

}

else {

 result.addAll(left);

}

Merging Sorted Sub-lists
 two sub-lists of length 4

9

left right

result

5 comparisons
8 copies

8 6 7 1 5 2 4 3

8 4 6 1 3 7 2 5

Simplified Complexity Analysis
 in the worst case merging a total of n elements

requires
n – 1 comparisons +
n copies
= 2n – 1 total operations

 we say that the worst-case complexity of merging is
the order of O(n)
 O(...) is called Big O notation
 notice that we don't care about the constants 2 and 1

10

 formally, a function f(n) is an element of O(n) if and

only if there is a positive real number M and a real
number m such that

| f(n) | < Mn for all n > m

 is 2n – 1 an element of O(n)?
 yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0

11

Informal Analysis of Merge Sort
 suppose the running time (the number of operations)

of merge sort is a function of the number of elements
to sort
 let the function be T(n)

 merge sort works by splitting the list into two sub-lists
(each about half the size of the original list) and
sorting the sub-lists
 this takes 2T(n/2) running time

 then the sub-lists are merged
 this takes O(n) running time

 total running time T(n) = 2T(n/2) + O(n)

12

Solving the Recurrence Relation
T(n) → 2T(n/2) + O(n) T(n) approaches...

 ≈ 2T(n/2) + n
 = 2[2T(n/4) + n/2] + n
 = 4T(n/4) + 2n
 = 4[2T(n/8) + n/4] + 2n
 = 8T(n/8) + 3n
 = 8[2T(n/16) + n/8] + 3n
 = 16T(n/16) + 4n
 = 2kT(n/2k) + kn

13

Solving the Recurrence Relation
T(n) = 2kT(n/2k) + kn

 for a list of length 1 we know T(1) = 1
 if we can substitute T(1) into the right-hand side of T(n) we

might be able to solve the recurrence

n/2k = 1 ⇒ 2k = n ⇒ k = log(n)

14

Solving the Recurrence Relation

T(n) = 2log(n)T(n/2log(n)) + n log(n)
 = n T(1) + n log(n)
 = n + n log(n)
 ∈ n log(n)

15

Is Merge Sort Efficient?
 consider a simpler (non-recursive) sorting algorithm

called insertion sort

16

// to sort an array a[0]..a[n-1] not Java!
for i = 0 to (n-1) {
 k = index of smallest element in sub-array a[i]..a[n-1]
 swap a[i] and a[k]
}

for i = 0 to (n-1) { not Java!
 for j = (i+1) to (n-1) {
 if (a[j] < a[i]) {
 k = j;
 }
 }
 tmp = a[i]; a[i] = a[k]; a[k] = tmp;
}

1 comparison +
1 assignment

3 assignments

 T(n)

17

∑ ∑
−

=

−

+=










+







=

1

0

1

)1(
32

n

i

n

ij

()() nin
n

i
312

1

0
+−−=∑

−

=

nin
n

i

n

i

n

i
31222

1

0

1

0

1

0
+−−= ∑∑∑

−

=

−

=

−

=

() nnnnn 32
2

122 2 +−
−

−=

nnnnn 322 22 +−+−=

()22 2 nOnn ∈+=

Comparing Rates of Growth

18

O(n)

O(n logn)

O(n2) O(2n)

n

Comments
 big O complexity tells you something about the

running time of an algorithm as the size of the input,
n, approaches infinity
 we say that it describes the limiting, or asymptotic, running

time of an algorithm
 for small values of n it is often the case that a less

efficient algorithm (in terms of big O) will run faster
than a more efficient one
 insertion sort is typically faster than merge sort for short

lists of numbers

19

Revisiting the Fibonacci Numbers
 the recursive implementation based on the definition

of the Fibonacci numbers is inefficient

public static int fibonacci(int n) {

 if (n == 0) {

 return 0;

 }

 else if (n == 1) {

 return 1;

 }

 int f = fibonacci(n - 1) + fibonacci(n - 2);

 return f;

}

20

 how inefficient is it?
 let T(n) be the running time to compute the nth

Fibonacci number
 T(0) = T(1) = 1
 T(n) is a recurrence relation

21

 T(n)

22

)2()1(−+−→ nTnT
())2()3()2(−+−+−= nTnTnT

)3()2(2 −+−= nTnT

)2(2 −> nT

())4(4)4(22 −=−> nTnT

())6(8)6(24 −=−> nTnT

())8(16)8(28 −=−> nTnT

)2(2 knTk −>

Solving the Recurrence Relation
T(n) > 2kT(n - 2k)

 we know T(1) = 1
 if we can substitute T(1) into the right-hand side of T(n) we

might be able to solve the recurrence

n - 2k = 1 ⇒ 1 + 2k = n ⇒ k = (n – 1)/2

23

() ())2(2)1(2)2(2)(2121 nnnk OTknTnT ∈==−> −−

An Efficient Fibonacci Algorithm
 an O(n) algorithm exists that computes all of the

Fibonacci numbers from f(0) to f(n)

24

F(5)

F(4)

F(3)

F(2)

F(1)
1

F(0)
0

F(1)
1

F(2)

F(1)
1

F(0)
0

F(3)

F(2)

F(1)
1

F(0)
0

F(1)
1

 create an array of length (n + 1) and sequentially fill in
the array values
 O(n)

// pre. n >= 0

public static int[] fibonacci(int n) {

 int[] f = new int[n + 1];

 f[0] = 0;

 f[1] = 1;

 for (int i = 2; i < n + 1; i++) {

 f[i] = f[i - 1] + f[i - 2];

 }

 return f;

}

25

Closing Question
 the recursive Fibonacci and merge sort algorithms can

be illustrated using a call tree
 merge sort is actually 2 trees; one to split and one to merge

 why is the Fibonacci algorithm O(2n) and merge sort
O(n logn)?

26

	Recursion (Part 2)
	Divide and Conquer
	Merge Sort
	Slide Number 4
	Merging Sorted Sub-lists
	Slide Number 6
	Merging Sorted Sub-lists
	Slide Number 8
	Merging Sorted Sub-lists
	Simplified Complexity Analysis
	
	Informal Analysis of Merge Sort
	Solving the Recurrence Relation
	Solving the Recurrence Relation
	Solving the Recurrence Relation
	Is Merge Sort Efficient?
	Slide Number 17
	Comparing Rates of Growth
	Comments
	Revisiting the Fibonacci Numbers
	Slide Number 21
	Slide Number 22
	Solving the Recurrence Relation
	An Efficient Fibonacci Algorithm
	Slide Number 25
	Closing Question

