
Recursion (Part 2) 

Solving Recurrence Relations 
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Divide and Conquer 
 bisection works by recursively finding which half of 

the range 'plus' – 'minus' the root lies in 
 each recursive call solves the same problem (tries to find 

the root of the function by guessing at the midpoint of the 
range) 

 each recursive call solves one smaller problem because half 
of the range is discarded 
 bisection method is decrease and conquer 

 divide and conquer algorithms typically recursively 
divide a problem into several smaller sub-problems 
until the sub-problems are small enough that they can 
be solved directly 
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Merge Sort 
 merge sort is a divide and conquer algorithm that sorts 

a list of numbers by recursively splitting the list into 
two halves 
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1 2 7 4 5 6 3 8 

1 7 6 8 2 4 5 3 

2 5 4 3 1 6 7 8 

4 3 2 5 7 8 1 6 



 the split lists are then merged into sorted sub-lists 

4 

4 3 2 5 7 8 1 6 

5 2 3 4 6 1 8 7 

8 6 7 1 5 2 4 3 

8 4 6 1 3 7 2 5 



Merging Sorted Sub-lists 
 two sub-lists of length 1 
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4 3 

left right 

result 

3 4 

1 comparison 
2 copies 
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LinkedList<Integer> result = new LinkedList<Integer>(); 

 

int fL = left.getFirst(); 

int fR = right.getFirst(); 

if (fL < fR) { 

  result.add(fL); 

  left.removeFirst(); 

} 

else { 

  result.add(fR); 

  right.removeFirst(); 

} 

if (left.isEmpty()) { 

  result.addAll(right); 

} 

else { 

  result.addAll(left); 

} 



Merging Sorted Sub-lists 
 two sub-lists of length 2 
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4 3 

left right 

result 

3 4 

3 comparisons 
4 copies 

5 2 

2 5 
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LinkedList<Integer> result = new LinkedList<Integer>(); 

 

while (left.size() > 0 && right.size() > 0 ) { 

  int fL = left.getFirst(); 

  int fR = right.getFirst(); 

  if (fL < fR) { 

    result.add(fL); 

    left.removeFirst(); 

  } 

  else { 

    result.add(fR); 

    right.removeFirst(); 

  } 

} 

if (left.isEmpty()) { 

  result.addAll(right); 

} 

else { 

  result.addAll(left); 

} 

 



Merging Sorted Sub-lists 
 two sub-lists of length 4 
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left right 

result 

5 comparisons 
8 copies 

8 6 7 1 5 2 4 3 

8 4 6 1 3 7 2 5 



Simplified Complexity Analysis 
 in the worst case merging a total of n elements 

requires 
n – 1  comparisons  +  
n    copies 
= 2n – 1  total operations 

 we say that the worst-case complexity of merging is 
the order of O(n) 
 O(...) is called Big O notation 
 notice that we don't care about the constants 2 and 1 
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 formally, a function f(n) is an element of O(n) if and 

only if there is a positive real number M and a real 
number m such that 

| f(n) | < Mn  for all  n > m  
 

 is 2n – 1 an element of O(n)? 
 yes, let M = 2 and m = 0, then 2n – 1 < 2n for all n > 0  
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Informal Analysis of Merge Sort 
 suppose the running time (the number of operations) 

of merge sort is a function of the number of elements 
to sort 
 let the function be T(n)  

 merge sort works by splitting the list into two sub-lists 
(each about half the size of the original list) and 
sorting the sub-lists 
 this takes  2T(n/2)  running time 

 then the sub-lists are merged 
 this takes O(n) running time 

 total running time T(n) = 2T(n/2) + O(n) 
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Solving the Recurrence Relation 
T(n) → 2T(n/2) + O(n)                 T(n) approaches... 

  ≈  2T(n/2) + n 
  = 2[ 2T(n/4) + n/2 ] + n 
  = 4T(n/4) + 2n  
  = 4[ 2T(n/8) + n/4 ] + 2n 
  = 8T(n/8) + 3n  
  = 8[ 2T(n/16) + n/8 ] + 3n 
  = 16T(n/16) + 4n  
  = 2kT(n/2k) + kn  
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Solving the Recurrence Relation 
T(n) = 2kT(n/2k) + kn  

 
 for a list of length 1 we know T(1) = 1  
 if we can substitute T(1) into the right-hand side of T(n) we 

might be able to solve the recurrence 
 

n/2k = 1  ⇒  2k = n ⇒ k = log(n) 
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Solving the Recurrence Relation 
 
T(n) = 2log(n)T(n/2log(n)) + n log(n)  
  = n T(1) + n log(n)  
  =  n + n log(n)  
  ∈  n log(n)  
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Is Merge Sort Efficient? 
 consider a simpler (non-recursive) sorting algorithm 

called insertion sort 
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// to sort an array a[0]..a[n-1]               not Java! 
for i = 0 to (n-1) { 
  k = index of smallest element in sub-array a[i]..a[n-1] 
  swap a[i] and a[k] 
} 

for i = 0 to (n-1) {                            not Java! 
  for j = (i+1) to (n-1) { 
    if (a[j] < a[i]) { 
      k = j; 
    } 
  } 
  tmp = a[i];   a[i] = a[k];   a[k] = tmp; 
} 

1 comparison + 
1 assignment 

3 assignments 



 
 T(n)  
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Comparing Rates of Growth 
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O(n) 

O(n logn) 

O(n2) O(2n) 

n 



Comments 
 big O complexity tells you something about the 

running time of an algorithm as the size of the input, 
n, approaches infinity 
 we say that it describes the limiting, or asymptotic, running 

time of an algorithm 
 for small values of n it is often the case that a less 

efficient algorithm (in terms of big O) will run faster 
than a more efficient one 
 insertion sort is typically faster than merge sort for short 

lists of numbers 
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Revisiting the Fibonacci Numbers 
 the recursive implementation based on the definition 

of the Fibonacci numbers is inefficient 
 

public static int fibonacci(int n) { 

  if (n == 0) { 

   return 0; 

  } 

  else if (n == 1) { 

   return 1; 

  } 

  int f = fibonacci(n - 1) + fibonacci(n - 2); 

  return f; 

} 

20 



 how inefficient is it? 
 let T(n) be the running time to compute the nth 

Fibonacci number 
 T(0) = T(1) = 1 
 T(n) is a recurrence relation 
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 T(n) 
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Solving the Recurrence Relation 
T(n) > 2kT(n - 2k) 

 
 we know T(1) = 1  
 if we can substitute T(1) into the right-hand side of T(n) we 

might be able to solve the recurrence 
 

n - 2k = 1  ⇒  1 + 2k = n ⇒ k = (n – 1)/2 
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An Efficient Fibonacci Algorithm 
 an O(n) algorithm exists that computes all of the 

Fibonacci numbers from f(0) to f(n) 
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 create an array of length (n + 1) and sequentially fill in 
the array values 
 O(n) 
 

// pre. n >= 0 

public static int[] fibonacci(int n) { 

  int[] f = new int[n + 1]; 

  f[0] = 0; 

  f[1] = 1; 

  for (int i = 2; i < n + 1; i++) { 

    f[i] = f[i - 1] + f[i - 2]; 

  } 

  return f; 

} 
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Closing Question 
 the recursive Fibonacci and merge sort algorithms can 

be illustrated using a call tree 
 merge sort is actually 2 trees; one to split and one to merge 
 

 why is the Fibonacci algorithm O(2n) and merge sort 
O(n logn)? 
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