
Graphical User Interfaces (Part 2) 
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View 
 view 
 presents the user with a sensory (visual, audio, haptic) 

representation of the model state 
 a user interface element (the user interface for simple 

applications) 
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Simple Applications 
 simple applications often consist of just a single 

window (containing some controls) 
JFrame 

window with border, title, buttons 
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View as a Subclass of JFrame 
 a View can be 

implemented as a subclass 
of a JFrame 
 hundreds of inherited 

methods but only a dozen 
or so are commonly called 
by the implementer (see 
URL below) 
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http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html 

 



Implementing a View 
 the View is responsible for creating: 
 the Controller 
 all of the user interface (UI) components 

 menus  JMenuBar, JMenu, JMenuItem 
 buttons  JButton 
 labels  JLabel 
 text fields JTextField 
 file dialog JFileChooser 

 the View is also responsible for setting up the 
communication of UI events to the Controller 
 each UI component needs to know what object it should 

send its events to 
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Menus 
 a menu appears in a menu bar (or a popup menu) 
 each item in the menu is a menu item   
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http://docs.oracle.com/javase/tutorial/uiswing/components/menu.html 



Menus 
 to create a menu 
 create a JMenuBar 
 create one or more JMenu objects 

 add the JMenu objects to the JMenuBar 
 create one or more JMenuItem objectes 

 add the JMenuItem objects to the JMenu 
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Menus 
 

 

JMenuBar menuBar = new JMenuBar(); 

 

JMenu fileMenu = new JMenu("File"); 

menuBar.add(fileMenu); 

 

JMenuItem printMenuItem = new JMenuItem("Print"); 

fileMenu.add(printMenuItem); 
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Adding the Menu 
 see CalcView constructor 
 try changing the layout used by the view 
 http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html 
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http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html


Labels and Text Fields 
 a label displays unselectable text and images 
 a text field is a single line of editable text 
 the ability to edit the text can be turned on and off 

10 http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html 
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http://docs.oracle.com/javase/tutorial/uiswing/components/label.html 



Labels 
 to create a label 

 
JLabel label = new JLabel("text for the label"); 

 
 

 to create a text field (20 characters wide) 
 

JTextField textField = new JTextField(20); 
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Adding the Labels and Text Fields 
 see CalcView constructor 
 try making the text field editable and non-editable 
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Buttons 
 a button responds to the user pointing and clicking the 

mouse on it (or the user pressing the Enter key when 
the button has the focus) 

13 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html 

button 
JButton 



Buttons 
 to create a button 

 
JButton button = new JButton("text for the button"); 
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Adding the Buttons 
 see CalcView constructor 
 try enabling and disabling the buttons 
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File Chooser 
 a file chooser provides a GUI for selecting a file to open 

(read) or save (write) 
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choosing a file to open) 

JFileChooser 

http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html 



Using the File Chooser 
 see CalcView getOpenFile and getSaveFile methods 

 http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html 
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http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html


Event Driven Programming 
 so far we have a View with some UI elements (buttons, 

text fields, menu items) 
 now we need to implement the actions 

 each UI element is a source of events 
 button pressed, slider moved, text changed (text field), etc. 

 when the user interacts with a UI element an event is 
triggered 
 this causes an event object to be sent to every object 

listening for that particular event 
 the event object carries information about the event 

 the event listeners respond to the event 
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Not a UML Diagram 
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Not a UML Diagram 
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Implementation 
 each JButton and JMenuItem has two inherited 

methods from AbstractButton 
   public void addActionListener(ActionListener l) 
 
  public void setActionCommand(String actionCommand) 

 
 for each JButton and JMenuItem 

1. call addActionListener with the controller as the 
argument 

2. call setActionCommand with a string describing what event 
has occurred 
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CalcView: Add Actions 
 see CalcView setCommand method 
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Controller 
 controller 
 processes and responds to events (such as user actions) 

from the view and translates them to model method calls 
 needs to interact with both the view and the model 

but does not own the view or model 
 aggregation 
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Controller Fields 
 see CalcController 
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CalcController 
 recall that our application only uses events that are 

fired by buttons (JButtons and JMenuItems) 
 a button fires an ActionEvent event whenever it is 

clicked 
 CalcController listens for fired ActionEvents 
 how? by implementing the ActionListener interface 

 
public interface ActionListener 

{ 
  void actionPerformed(ActionEvent e); 
} 
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 CalcController was registered to listen for 
ActionEvents fired by the various buttons in 
CalcView (see method setCommand in CalcView) 

 whenever a button fires an event, it passes an 
ActionEvent object to CalcController via the 
actionPerformed method 
 actionPerformed is responsible for dealing with the 

different actions (open, save, sum, etc) 
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Opening a File 
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CalcController: Open a File 
 see CalcController actionPerformed method 
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Saving a File 
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CalcController: Save a File 
 see CalcController actionPerformed method 
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Sum, Subtract, Multiply, Divide 
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CalcController: Other Actions 
 see CalcController actionPerformed method 
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actionPerformed 
 even with only 5 buttons and 2 menu items our 
actionPerformed method is unwieldy 
 imagine what would happen if you tried to implement a 

Controller this way for a big application 
 
 

 rather than one big actionPerformed method we can 
register a different ActionListener for each button 
 each ActionListener will be an object that has its own 

version of the actionPerformed method 
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Calculator Listeners 
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DivideListener 

SubtractListener 

SumListener 
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Calculator Listener 
 whenever a listener receives an event corresponding to 

an arithmetic operation it does: 
1. asks CalcView for the user value and converts it to a 

BigInteger 
 getUserValue method 

 
2. asks CalcModel to perform the arithmetic operation 
 doOperation method 

 
3. updates the calculated value in CalcView 
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ArithmeticListener 
 

 

private abstract class ArithmeticListener implements 
ActionListener { 

 

  @Override 

  public void actionPerformed(ActionEvent action) { 

    BigInteger userValue = this.getUserValue(); 

    if (userValue != null) { 

      this.doOperation(userValue); 

      this.setCalculatedValue(); 

    } 

  } 
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1. 

2. 

3. 



ArithmeticListener 
 

 

 

  /** 

   * Subclasses will override this method to add, subtract, 

   * divide, multiply, etc., the userValue with the current 

   * calculated value. 

   */ 

  protected abstract void doOperation(BigInteger userValue);   
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ArithmeticListener 
 

  private BigInteger getUserValue() { 

    BigInteger userValue = null; 

    try { 

      userValue = new BigInteger(getView().getUserValue()); 

    } 

    catch(NumberFormatException ex) 

    {} 

    return userValue; 

  } 

 

  private void setCalculatedValue() { 

      getView().setCalcValue(getModel().getCalcValue(). 

                             toString()); 

  } 
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Note: these methods need 
access to the view and model 
which are associated with the 
controller. 



Inner Classes 
 
 
 

 how do we give the listeners access to the view and 
model? 
 could use aggregation 
 alternatively, we can make the listeners be inner classes of 

the controller 
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Inner Classes 
 an inner class is a (non-static) class that is defined 

inside of another class 
 

 public class Outer 

  { 

    // Outer's attributes and methods 

 

    private class Inner 

    { // Inner's attributes and methods 

    } 

  }   
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Inner Classes 
 an inner class has access to the attributes and methods 

of its enclosing class, even the private ones 
 

 public class Outer 

  { 

    private int outerInt; 

 

    private class Inner 

    { 

      public setOuterInt(int num) { outerInt = num; } 

    } 

  }   
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note not this.outerInt 

use Outer.this.outerInt 



ArithmeticListener 
public class CalcController2 { 

  // ... 

 

  // inner class of CalcController2 

  private abstract class ArithmeticListener implements 

                                            ActionListener { 

    // ... 

  } 

 

  // inner class of CalcController2 

  private class SumListener extends ArithmeticListener { 

    @Override 

    protected void doOperation(BigInteger userValue) { 

      // ... 

    } 

  } 

} 
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SumListener 
   

 

 

private class SumListener extends ArithmeticListener { 

  @Override 

  protected void doOperation(BigInteger userValue) { 

    if (userValue != null) { 

      getModel().sum(userValue); 

    } 

  } 

} 
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Why Use Inner Classes 
 only the controller needs to create instances of the 

various listeners 
 i.e., the listeners are not useful outside of the controller 
 making the listeners private inner classes ensures that only 
CalcController can instantiate the listeners 
 

 the listeners need access to private methods inside of 
CalcController (namely getView and 
getModel) 
 inner classes can access private methods  
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Calculator using multiple listeners 
 requires changes to the view to support the adding of 

listeners 
 see CalcView2 
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