
Graphical User Interfaces (Part 2)

1

View
 view
 presents the user with a sensory (visual, audio, haptic)

representation of the model state
 a user interface element (the user interface for simple

applications)

2

Simple Applications
 simple applications often consist of just a single

window (containing some controls)
JFrame

window with border, title, buttons

3

View as a Subclass of JFrame
 a View can be

implemented as a subclass
of a JFrame
 hundreds of inherited

methods but only a dozen
or so are commonly called
by the implementer (see
URL below)

4

View

JFrame

Frame

Window

Container

Component

Object

user interface item

holds other components

plain window

window with title and
border

http://java.sun.com/docs/books/tutorial/uiswing/components/frame.html

Implementing a View
 the View is responsible for creating:
 the Controller
 all of the user interface (UI) components

 menus JMenuBar, JMenu, JMenuItem
 buttons JButton
 labels JLabel
 text fields JTextField
 file dialog JFileChooser

 the View is also responsible for setting up the
communication of UI events to the Controller
 each UI component needs to know what object it should

send its events to

5

Menus
 a menu appears in a menu bar (or a popup menu)
 each item in the menu is a menu item

6

menu bar
JMenuBar

menu
JMenu

menu item
JMenuItem

JMenuBar

+ add(JMenu)

JMenu

+ add(JMenuItem)

JMenuItem * *

http://docs.oracle.com/javase/tutorial/uiswing/components/menu.html

Menus
 to create a menu
 create a JMenuBar
 create one or more JMenu objects

 add the JMenu objects to the JMenuBar
 create one or more JMenuItem objectes

 add the JMenuItem objects to the JMenu

7

Menus

JMenuBar menuBar = new JMenuBar();

JMenu fileMenu = new JMenu("File");

menuBar.add(fileMenu);

JMenuItem printMenuItem = new JMenuItem("Print");

fileMenu.add(printMenuItem);

8

Adding the Menu
 see CalcView constructor
 try changing the layout used by the view
 http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

9

http://docs.oracle.com/javase/tutorial/uiswing/layout/visual.html

Labels and Text Fields
 a label displays unselectable text and images
 a text field is a single line of editable text
 the ability to edit the text can be turned on and off

10 http://docs.oracle.com/javase/tutorial/uiswing/components/textfield.html

label
JLabel

label
JLabel

text field (edit off)
JTextField

text field (edit on)
JTextField

http://docs.oracle.com/javase/tutorial/uiswing/components/label.html

Labels
 to create a label

JLabel label = new JLabel("text for the label");

 to create a text field (20 characters wide)

JTextField textField = new JTextField(20);

11

Adding the Labels and Text Fields
 see CalcView constructor
 try making the text field editable and non-editable

12

Buttons
 a button responds to the user pointing and clicking the

mouse on it (or the user pressing the Enter key when
the button has the focus)

13 http://docs.oracle.com/javase/tutorial/uiswing/components/button.html

button
JButton

Buttons
 to create a button

JButton button = new JButton("text for the button");

14

Adding the Buttons
 see CalcView constructor
 try enabling and disabling the buttons

15

File Chooser
 a file chooser provides a GUI for selecting a file to open

(read) or save (write)

16

file chooser (for
choosing a file to open)

JFileChooser

http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html

Using the File Chooser
 see CalcView getOpenFile and getSaveFile methods

 http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html

17

http://docs.oracle.com/javase/tutorial/uiswing/components/filechooser.html

Event Driven Programming
 so far we have a View with some UI elements (buttons,

text fields, menu items)
 now we need to implement the actions

 each UI element is a source of events
 button pressed, slider moved, text changed (text field), etc.

 when the user interacts with a UI element an event is
triggered
 this causes an event object to be sent to every object

listening for that particular event
 the event object carries information about the event

 the event listeners respond to the event

18

Not a UML Diagram

19

event
source 1

event
source 2

event
 listener A

event
 listener B

event
 listener C

event
 listener D

event object 1

event object 2

Not a UML Diagram

20

"open"

Controller

event object "open"
"save"

"sum"

"subtract"

"multiply"

"divide"

"clear"
event object "clear"

AbstractButton ActionEvent
implements

ActionListener

Implementation
 each JButton and JMenuItem has two inherited

methods from AbstractButton
 public void addActionListener(ActionListener l)

 public void setActionCommand(String actionCommand)

 for each JButton and JMenuItem

1. call addActionListener with the controller as the
argument

2. call setActionCommand with a string describing what event
has occurred

21

CalcView: Add Actions
 see CalcView setCommand method

22

Controller
 controller
 processes and responds to events (such as user actions)

from the view and translates them to model method calls
 needs to interact with both the view and the model

but does not own the view or model
 aggregation

23

View

JFrame

Controller Model
1 1

View is a
subclass

of JFrame

Controller has
1 View

Controller has
1 Model

Controller Fields
 see CalcController

24

CalcController
 recall that our application only uses events that are

fired by buttons (JButtons and JMenuItems)
 a button fires an ActionEvent event whenever it is

clicked
 CalcController listens for fired ActionEvents
 how? by implementing the ActionListener interface

public interface ActionListener

{
 void actionPerformed(ActionEvent e);
}

25

 CalcController was registered to listen for
ActionEvents fired by the various buttons in
CalcView (see method setCommand in CalcView)

 whenever a button fires an event, it passes an
ActionEvent object to CalcController via the
actionPerformed method
 actionPerformed is responsible for dealing with the

different actions (open, save, sum, etc)

26

Opening a File

27

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r
 actionPerformed

getOpenFile

C
a
l
c
M
o
d
e
l
 open

getLastUserValue

setUserValue

2

1

3

5

4

setCalcValue 7

getCalcValue 6

CalcController: Open a File
 see CalcController actionPerformed method

28

Saving a File

29

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r
 actionPerformed

getSaveFile

C
a
l
c
M
o
d
e
l
 save

2

1

3

CalcController: Save a File
 see CalcController actionPerformed method

30

Sum, Subtract, Multiply, Divide

31

C
a
l
c
V
i
e
w

C
a
l
c
C
o
n
t
r
o
l
l
e
r
 actionPerformed

getUserValue

C
a
l
c
M
o
d
e
l
 sum

2

1

3

setCalcValue 5

getCalcValue 4

CalcController: Other Actions
 see CalcController actionPerformed method

32

actionPerformed
 even with only 5 buttons and 2 menu items our
actionPerformed method is unwieldy
 imagine what would happen if you tried to implement a

Controller this way for a big application

 rather than one big actionPerformed method we can
register a different ActionListener for each button
 each ActionListener will be an object that has its own

version of the actionPerformed method

33

Calculator Listeners

34

DivideListener

SubtractListener

SumListener

ArithmeticListener

Calculator Listener
 whenever a listener receives an event corresponding to

an arithmetic operation it does:
1. asks CalcView for the user value and converts it to a

BigInteger
 getUserValue method

2. asks CalcModel to perform the arithmetic operation
 doOperation method

3. updates the calculated value in CalcView

35

ArithmeticListener

private abstract class ArithmeticListener implements
ActionListener {

 @Override

 public void actionPerformed(ActionEvent action) {

 BigInteger userValue = this.getUserValue();

 if (userValue != null) {

 this.doOperation(userValue);

 this.setCalculatedValue();

 }

 }

36

1.

2.

3.

ArithmeticListener

 /**

 * Subclasses will override this method to add, subtract,

 * divide, multiply, etc., the userValue with the current

 * calculated value.

 */

 protected abstract void doOperation(BigInteger userValue);

37

ArithmeticListener

 private BigInteger getUserValue() {

 BigInteger userValue = null;

 try {

 userValue = new BigInteger(getView().getUserValue());

 }

 catch(NumberFormatException ex)

 {}

 return userValue;

 }

 private void setCalculatedValue() {

 getView().setCalcValue(getModel().getCalcValue().

 toString());

 }

38

Note: these methods need
access to the view and model
which are associated with the
controller.

Inner Classes

 how do we give the listeners access to the view and
model?
 could use aggregation
 alternatively, we can make the listeners be inner classes of

the controller

39

Inner Classes
 an inner class is a (non-static) class that is defined

inside of another class

 public class Outer

 {

 // Outer's attributes and methods

 private class Inner

 { // Inner's attributes and methods

 }

 }

40

Inner Classes
 an inner class has access to the attributes and methods

of its enclosing class, even the private ones

 public class Outer

 {

 private int outerInt;

 private class Inner

 {

 public setOuterInt(int num) { outerInt = num; }

 }

 }

41

note not this.outerInt

use Outer.this.outerInt

ArithmeticListener
public class CalcController2 {

 // ...

 // inner class of CalcController2

 private abstract class ArithmeticListener implements

 ActionListener {

 // ...

 }

 // inner class of CalcController2

 private class SumListener extends ArithmeticListener {

 @Override

 protected void doOperation(BigInteger userValue) {

 // ...

 }

 }

}

 42

SumListener

private class SumListener extends ArithmeticListener {

 @Override

 protected void doOperation(BigInteger userValue) {

 if (userValue != null) {

 getModel().sum(userValue);

 }

 }

}

43

Why Use Inner Classes
 only the controller needs to create instances of the

various listeners
 i.e., the listeners are not useful outside of the controller
 making the listeners private inner classes ensures that only
CalcController can instantiate the listeners

 the listeners need access to private methods inside of
CalcController (namely getView and
getModel)
 inner classes can access private methods

44

Calculator using multiple listeners
 requires changes to the view to support the adding of

listeners
 see CalcView2

45

	Graphical User Interfaces (Part 2)
	View
	Simple Applications
	View as a Subclass of JFrame
	Implementing a View
	Menus
	Menus
	Menus
	Adding the Menu
	Labels and Text Fields
	Labels
	Adding the Labels and Text Fields
	Buttons
	Buttons
	Adding the Buttons
	File Chooser
	Using the File Chooser
	Event Driven Programming
	Not a UML Diagram
	Not a UML Diagram
	Implementation
	CalcView: Add Actions
	Controller
	Controller Fields
	CalcController
	Slide Number 26
	Opening a File
	CalcController: Open a File
	Saving a File
	CalcController: Save a File
	Sum, Subtract, Multiply, Divide
	CalcController: Other Actions
	actionPerformed
	Calculator Listeners
	Calculator Listener
	ArithmeticListener
	ArithmeticListener
	ArithmeticListener
	Inner Classes
	Inner Classes
	Inner Classes
	ArithmeticListener
	SumListener
	Why Use Inner Classes
	Calculator using multiple listeners

