
Inheritance (Part 4)

Polymorphism and Abstract Classes

1

Inheritance Recap
 inheritance allows you to create subclasses that are

substitutable for their ancestors
 inheritance interacts with preconditions, postconditions,

and exception throwing
 subclasses
 inherit all non-private features
 can add new features
 can change the behaviour of non-final methods by

overriding the parent method
 contain an instance of the superclass

 subclasses must construct the instance via a superclass
constructor

2

Puzzle 3

3

 Write the class Enigma, which extends Object, so that
the following program prints false:

 public class Conundrum

 {

 public static void main(String[] args)

 {

 Enigma e = new Enigma();

 System.out.println(e.equals(e));

 }

 }

 You must not override Object.equals()
[Java Puzzlers by Joshua Block and Neal Gaffer]

Polymorphism
 inheritance allows you to define a base class that has

fields and methods
 classes derived from the base class can use the public and

protected base class fields and methods
 polymorphism allows the implementer to change the

behaviour of the derived class methods

4

// client code

public void print(Dog d) {

 System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

CockerSpaniel lady = new CockerSpaniel();

Mix mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

5

Dog toString
CockerSpaniel toString
Mix toString

 notice that fido, lady, and mutt were declared as
Dog, CockerSpaniel, and Mutt

 what if we change the declared type of fido, lady,
and mutt ?

6

// client code

public void print(Dog d) {

 System.out.println(d.toString());

}

// later on...

Dog fido = new Dog();

Dog lady = new CockerSpaniel();

Dog mutt = new Mix();

this.print(fido);

this.print(lady);

this.print(mutt);

7

Dog toString
CockerSpaniel toString
Mix toString

 what if we change the print method parameter type
to Object ?

8

// client code
public void print(Object obj) {
 System.out.println(obj.toString());
}

// later on...
Dog fido = new Dog();
Dog lady = new CockerSpaniel();
Dog mutt = new Mix();
this.print(fido);
this.print(lady);
this.print(mutt);
this.print(new Date());

9

Dog toString
CockerSpaniel toString
Mix toString
Date toString

Late Binding
 polymorphism requires late binding of the method

name to the method definition
 late binding means that the method definition is

determined at run-time

10

obj.toString()
non-static method

run-time type of
the instance obj

Declared vs Run-time type

11

Dog lady = new CockerSpaniel();

declared
type

run-time or actual
type

 the declared type of an instance determines what

methods can be used

 the name lady can only be used to call methods in Dog
 lady.someCockerSpanielMethod() won't compile

12

Dog lady = new CockerSpaniel();

 the actual type of the instance determines what

definition is used when the method is called

 lady.toString() uses the CockerSpaniel definition

of toString

13

Dog lady = new CockerSpaniel();

Abstract Classes
 sometimes you will find that you want the API for a

base class to have a method that the base class cannot
define
 e.g. you might want to know what a Dog's bark sounds like

but the sound of the bark depends on the breed of the dog
 you want to add the method bark to Dog but only the subclasses

of Dog can implement bark

14

Abstract Classes
 sometimes you will find that you want the API for a

base class to have a method that the base class cannot
define
 e.g. you might want to know the breed of a Dog but only the

subclasses have information about the breed
 you want to add the method getBreed to Dog but only the

subclasses of Dog can implement getBreed

15

 if the base class has methods that only subclasses can
define and the base class has fields common to all
subclasses then the base class should be abstract
 if you have a base class that just has methods that it cannot

implement then you probably want an interface
 abstract :

 (dictionary definition) existing only in the mind

 in Java an abstract class is a class that you cannot make

instances of
 e.g. http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

16

http://docs.oracle.com/javase/7/docs/api/java/util/AbstractList.html

 an abstract class provides a partial definition of a class
 the subclasses complete the definition

 an abstract class can define fields and methods
 subclasses inherit these

 an abstract class can define constructors
 subclasses must call these

 an abstract class can declare abstract methods
 subclasses must define these (unless the subclass is also

abstract)

17

Abstract Methods
 an abstract base class can declare, but not define, zero

or more abstract methods

 the base class is saying "all Dogs can provide a String
describing the breed, but only the subclasses know
enough to implement the method"

18

public abstract class Dog
{
 // fields, ctors, regular methods

 public abstract String getBreed();
}

Abstract Methods

 the non-abstract subclasses must provide definitions
for all abstract methods
 consider getBreed in Mix

19

public class Mix extends Dog

{ // stuff from before...

 @Override public String getBreed() {

 if(this.breeds.isEmpty()) {

 return "mix of unknown breeds";

 }

 StringBuffer b = new StringBuffer();

 b.append("mix of");

 for(String breed : this.breeds) {

 b.append(" " + breed);

 }
 return b.toString();

}

20

PureBreed
 a purebreed dog is a dog with a single breed
 one String field to store the breed

 note that the breed is determined by the subclasses
 the class PureBreed cannot give the breed field a value
 but it can implement the method getBreed

 the class PureBreed defines an field common to all
subclasses and it needs the subclass to inform it of the
actual breed
 PureBreed is also an abstract class

21

public abstract class PureBreed extends Dog

{

 private String breed;

 public PureBreed(String breed) {

 super();

 this.breed = breed;

 }

 public PureBreed(String breed, int size, int energy) {

 super(size, energy);

 this.breed = breed;

 }

22

 @Override public String getBreed()

 {

 return this.breed;

 }

}

23

Subclasses of PureBreed

 the subclasses of PureBreed are responsible for
setting the breed
 consider Komondor

24

Komondor
public class Komondor extends PureBreed

{

 private final String BREED = "komondor";

 public Komondor() {

 super(BREED);

 }

 public Komondor(int size, int energy) {

 super(BREED, size, energy);

 }

 // other Komondor methods...

}

25

Inheritance (Part 5)

Static Features; Interfaces

26

Static Fields and Inheritance

 static fields behave the same as non-static fields in
inheritance
 public and protected static fields are inherited by

subclasses, and subclasses can access them directly by name
 private static fields are not inherited and cannot be

accessed directly by name
 but they can be accessed/modified using public and protected

methods

27

Static Fields and Inheritance

 the important thing to remember about static fields

and inheritance
 there is only one copy of the static field shared among the

declaring class and all subclasses

 consider trying to count the number of Dog objects
created by using a static counter

28

// the wrong way to count the number of Dogs created
public abstract class Dog {
 // other fields...
 static protected int numCreated = 0;

 Dog() {
 // ...
 Dog.numCreated++;
 }

 public static int getNumberCreated() {
 return Dog.numCreated;
 }

 // other contructors, methods...
}

29

protected, not private, so that
subclasses can modify it directly

// the wrong way to count the number of Dogs created

public class Mix extends Dog

{

 // fields...

 Mix()

 {

 super();

 Mix.numCreated++;

 }

 // other contructors, methods...

}

30

// too many dogs!

public class TooManyDogs

{

 public static void main(String[] args)

 {

 Mix mutt = new Mix();

 System.out.println(Mix.getNumberCreated());

 }

}

prints 2

31

What Went Wrong?
 there is only one copy of the static field shared among

the declaring class and all subclasses
 Dog declared the static field
 Dog increments the counter everytime its constructor is

called
 Mix inherits and shares the single copy of the field
 Mix constructor correctly calls the superclass constructor

 which causes numCreated to be incremented by Dog
 Mix constructor then incorrectly increments the counter

32

Counting Dogs and Mixes

 suppose you want to count the number of Dog
instances and the number of Mix instances
 Mix must also declare a static field to hold the count
 somewhat confusingly, Mix can give the counter the same name

as the counter declared by Dog

33

public class Mix extends Dog
{
 // other fields...
 private static int numCreated = 0; // bad style

 public Mix()
 {
 super(); // will increment Dog.numCreated
 // other Mix stuff...
 numCreated++; // will increment Mix.numCreated
 }

 // ...

34

Hiding Fields
 note that the Mix field numCreated has the same

name as an field declared in a superclass
 whenever numCreated is used in Mix, it is the Mix

version of the field that is used

 if a subclass declares an field with the same name as a
superclass field, we say that the subclass field hides the
superclass field
 considered bad style because it can make code hard to read

and understand
 should change numCreated to numMixCreated in Mix

35

Static Methods and Inheritance
 there is a big difference between calling a static

method and calling a non-static method when dealing
with inheritance

 there is no dynamic dispatch on static methods
 therefore, you cannot override a static method

36

37

public abstract class Dog {

 private static int numCreated = 0;

 public static int getNumCreated() {

 return Dog.numCreated;

 }

}

public class Mix {

 private static int numMixCreated = 0;

 public static int getNumCreated() {

 return Mix.numMixCreated;
 }

}

public class Komondor {
 private static int numKomondorCreated = 0;

 public static int getNumCreated() {

 return Komondor.numKomondorCreated;
 }

}

notice no @Override

notice no @Override

38

public class WrongCount {

 public static void main(String[] args) {

 Dog mutt = new Mix();

 Dog shaggy = new Komondor();

 System.out.println(mutt.getNumCreated());

 System.out.println(shaggy.getNumCreated());

 System.out.println(Mix.getNumCreated());

 System.out.println(Komondor.getNumCreated());

 }

}

prints 2

 2

 1

 1

What's Going On?
 there is no dynamic dispatch on static methods

 because the declared type of mutt is Dog, it is the Dog

version of getNumCreated that is called

 because the declared type of shaggy is Dog, it is the
Dog version of getNumCreated that is called

39

Hiding Methods
 notice that Mix.getNumCreated and
Komondor.getNumCreated work as expected

 if a subclass declares a static method with the same
name as a superclass static method, we say that the
subclass static method hides the superclass static
method
 you cannot override a static method, you can only hide it
 hiding static methods is considered bad form because it

makes code hard to read and understand

40

 the client code in WrongCount illustrates two cases of
bad style, one by the client and one by the
implementer of the Dog hierarchy
1. the client should not have used an instance to call a static

method
2. the implementer should not have hidden the static

method in Dog

41

Interfaces

42

Interfaces
 recall that you typically use an abstract class when you

have a superclass that has fields and methods that are
common to all subclasses
 the abstract class provides a partial implementation that

the subclasses must complete
 subclasses can only inherit from a single superclass

 if you want classes to support a common API then you

probably want to define an interface

43

Interfaces
 in Java an interface is a reference type (similar to a

class)
 an interface says what methods an object must have

and what the methods are supposed to do
 i.e., an interface is an API

44

Interfaces
 an interface can contain only
 constants
 method signatures
 nested types (ignore for now)

 there are no method bodies
 interfaces cannot be instantiated—they can only be

implemented by classes or extended by other interfaces

45

Interfaces Already Seen

public interface Comparable<T>

{

 int compareTo(T o);

}

46

access—either public or
package-private (blank)

interface
name

Interfaces Already Seen
public interface Iterable<T>
{
 Iterator<T> iterator();
}

public interface Collection<E> extends Iterable<E>
{
 boolean add(E e);
 void clear();
 boolean contains(Object o);
 // many more method signatures...
}

47

access—either public or
package-private (blank)

interface
name

parent
interfaces

Interfaces Already Seen

public interface List<E> extends Collection<E>

{

 boolean add(E e);

 void add(int index, E element);

 boolean addAll(Collection<? extends E> c);

 // many more method signatures...

}

48

Creating an Interface
 decide on a name
 decide what methods you need in the interface

 this is harder than it sounds because...
 once an interface is released and widely implemented, it is

almost impossible to change
 if you change the interface, all classes implementing the interface

must also change

49

Function Interface
 in mathematics, a real-valued scalar function of one

real scalar variable maps a real value to another real
value

50

y = f (x)

Creating an Interface
 decide on a name
 DoubleToDoubleFunction

 decide what methods you need in the interface
 double evaluate(double x)
 double[] evaluate(double[] x)

51

Creating an Interface

public interface DoubleToDoubleFunction {

 double at(double x);

 double[] at(double[] x);

}

52

Classes that Implement an Interface
 a class that implements an interface says so by using

the implements keyword
 consider the function f (x) = x2

53

public Square implements DoubleToDoubleFunction {
 public double at(double x) {
 return x * x;
 }

 public double[] at(double[] x) {
 double[] result = new double[x.length];
 for (int i = 0; i < x.length; i++) {
 result[i] = x[i] * x[i];
 }
 return result;
 }
}

54

Implementing Multiple Interfaces
 unlike inheritance where a subclass can extend only

one superclass, a class can implement as many
interfaces as it needs to

public class ArrayList<E>

 extends AbstractList<E>

 implements List<E>,

 RandomAccess,

 Cloneable,

 Serializable

55

superclass

interfaces

	Inheritance (Part 4)
	Inheritance Recap
	Puzzle 3
	Polymorphism
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Late Binding
	Declared vs Run-time type
	Slide Number 12
	Slide Number 13
	Abstract Classes
	Abstract Classes
	Slide Number 16
	Slide Number 17
	Abstract Methods
	Abstract Methods
	Slide Number 20
	PureBreed
	Slide Number 22
	Slide Number 23
	Subclasses of PureBreed
	Komondor
	Inheritance (Part 5)
	Static Fields and Inheritance
	Static Fields and Inheritance
	Slide Number 29
	Slide Number 30
	Slide Number 31
	What Went Wrong?
	Counting Dogs and Mixes
	Slide Number 34
	Hiding Fields
	Static Methods and Inheritance
	Slide Number 37
	Slide Number 38
	What's Going On?
	Hiding Methods
	Slide Number 41
	Interfaces
	Interfaces
	Interfaces
	Interfaces
	Interfaces Already Seen
	Interfaces Already Seen
	Interfaces Already Seen
	Creating an Interface
	Function Interface
	Creating an Interface
	Creating an Interface
	Classes that Implement an Interface
	Slide Number 54
	Implementing Multiple Interfaces

