
Composition (Part 2)

1

Price of Defensive Copying
 defensive copies are often required, but the price of

defensive copying is time and memory needed to
create and garbage collect lots of objects

 run triangle demo program

2

Period Class
 adapted from Effective Java by Joshua Bloch
 available online at

http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

 we want to implement a class that represents a period

of time
 a period has a start time and an end time

 end time is always after the start time

3

http://www.informit.com/articles/article.aspx?p=31551&seqNum=2

Period Class
 we want to implement a class that represents a period

of time
 has-a Date representing the start of the time period
 has-a Date representing the end of the time period
 class invariant: start of time period is always prior to the

end of the time period

 class invariant
 some property of the state of the object that is established

by a constructor and maintained between calls to public
methods

4

Period Class

5

Period Date
2

Period is a compostion
of two Date objects

6

public final class Period {

 private Date start;

 private Date end;

 /**

 * @param start beginning of the period.

 * @param end end of the period; must not precede start.

 * @throws IllegalArgumentException if start is after end.

 * @throws NullPointerException if start or end is null

 */

 public Period(Date start, Date end) {

 if (start.compareTo(end) > 0) {

 throw new IllegalArgumentException("start after end");

 }

 this.start = start;

 this.end = end;

 }

Test Your Knowledge
1. Is Date mutable or immutable?
2. Is Period implementing aggregation or composition?
3. Add 1 more line of client code to the following that

shows how the client can break the class invariant:

 Date start = new Date();
 Date end = new Date(start.getTime() + 10000);

 Period p = new Period(start, end);

4. Fix the constructor.

7

8

/**

 * @return the start Date of the period

 */

 public Date getStart()

 {

 return this.start;

 }

 /**

 * @return the end Date of the period

 */

 public Date getEnd()

 {

 return this.end;

 }

Test Your Knowledge
1. Add 1 more line of client code to the following that

shows how the client can break the class invariant
using either of the start or end methods

 Date start = new Date();

 Date end = new Date(start.getTime() + 10000);

 Period p = new Period(start, end);

9

10

 /**

 * Creates a time period by copying another time period.

 * @param other the time period to copy

 */

 public Period(Period other)

 {

 this.start = other.start;

 this.end = other.end;

 }

Test Your Knowledge
1. What does the following program print?

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p1 = new Period(start, end);

Period p2 = new Period(p1);

System.out.println(p1.getStart() == p2.getStart());

System.out.println(p1.getEnd() == p2.getEnd());

2. Fix the copy constructor.

11

Date does not provide a copy constructor. To copy a Date object d:
 Date d = new Date();
 Date dCopy = new Date(d.getTime());

12

 /**
 * Sets the start time of the period.

 * @param newStart the new starting time of the period

 * @return true if the new starting time is earlier than

 * the current end time; false otherwise

 */

 public boolean setStart(Date newStart)

 {

 boolean ok = false;

 if (newStart.compareTo(this.end) < 0)

 {

 this.start = newStart;

 ok = true;

 }

 return ok;

 }

Test Your Knowledge
1. Add 1 more line of client code to the following that

shows how the client can break the class invariant

Date start = new Date();

Date end = new Date(start.getTime() + 10000);

Period p = new Period(start, end);

p.setStart(start);

2. Fix the accessors and setStart.

13

Privacy Leaks
 a privacy leak occurs when a class exposes a reference to a

non-public field (that is not a primitive or immutable)
 given a class X that is a composition of a Y

 these are all examples of privacy leaks

14

public class X {
 private Y y;
 // …
}

public X(Y y) {
 this.y = y;
}

public X(X other) {
 this.y = other.y;
}

public Y getY() {
 return this.y;
}

public void setY(Y y) {
 this.y = y;
}

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field
 the object state can become inconsistent

 example: if a CreditCard exposes a reference to its expiry Date
then a client could set the expiry date to before the issue date

15

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field
 it becomes impossible to guarantee class invariants

 example: if a Period exposes a reference to one of its Date
objects then the end of the period could be set to before the start
of the period

16

Consequences of Privacy Leaks

 a privacy leak allows some other object to control the
state of the object that leaked the field
 composition becomes broken because the object no longer

owns its attribute
 when an object “dies” its parts may not die with it

17

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended
3. Make all fields final
4. Make all fields private
5. Prevent clients from obtaining a reference to any

mutable fields

18 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

Immutability and Composition

 why is Item 5 of the Recipe for Immutability needed?

19

Collections as Attributes

Still Aggregation and Composition

20

Motivation
 often you will want to implement a class that has-a

collection as an attribute
 a university has-a collection of faculties and each faculty

has-a collection of schools and departments
 a molecule has-a collection of atoms
 a person has-a collection of acquaintances
 from the notes, a student has-a collection of GPAs and has-

a collection of courses
 a polygonal model has-a collection of triangles*

21

*polygons, actually, but triangles are easier to work with

What Does a Collection Hold?
 a collection holds references to instances
 it does not hold the instances

22

ArrayList<Date> dates =
 new ArrayList<Date>();

Date d1 = new Date();
Date d2 = new Date();
Date d3 = new Date();

dates.add(d1);
dates.add(d2);
dates.add(d3);

100 client invocation

dates 200

d1 500

d2 600

d3 700

...

200 ArrayList object

500

600

700

Test Your Knowledge
1. What does the following print?
 ArrayList<Point> pts = new ArrayList<Point>();

 Point p = new Point(0., 0., 0.);

 pts.add(p);

 p.setX(10.0);

 System.out.println(p);

 System.out.println(pts.get(0));

2. Is an ArrayList<X> an aggregation of X or a

composition of X?

23

Student Class (from notes)
 a Student has-a string id
 a Student has-a collection of yearly GPAs
 a Student has-a collection of courses

24

Student Set<Course> List<Double>
1 1

Double Course String

1 4 *

gpas courses

id

PolygonalModel Class
 a polygonal model has-a List of Triangles
 aggregation

 implements Iterable<Triangle>
 allows clients to access each Triangle sequentially

 class invariant
 List never null

25

PolygonalModel List<Triangle>
1

Triangle

*

tri

Iterable Interface
 implementing this interface allows an object to be the

target of the "foreach" statement
 must provide the following method

26

Iterator<T> iterator()
Returns an iterator over a set of elements of type T.

PolygonalModel
class PolygonalModel implements Iterable<Triangle>
{
 private List<Triangle> tri;

 public PolygonalModel()
 {
 this.tri = new ArrayList<Triangle>();
 }

 public Iterator<Triangle> iterator()
 {
 return this.tri.iterator();
 }

27

PolygonalModel
 public void clear()

 {

 // removes all Triangles

 this.tri.clear();

 }

 public int size()

 {

 // returns the number of Triangles

 return this.tri.size();

 }

28

Collections as Attributes
 when using a collection as an attribute of a class X you

need to decide on ownership issues
 does X own or share its collection?
 if X owns the collection, does X own the objects held in the

collection?

29

X Shares its Collection with other Xs
 if X shares its collection with other X instances, then

the copy constructor does not need to create a new
collection
 the copy constructor can simply assign its collection
 [notes 4.3.3] refer to this as aliasing

30

PolygonalModel Copy Constructor 1

 public PolygonalModel(PolygonalModel p)
 {

 // implements aliasing (sharing) with other

 // PolygonalModel instances

 this.setTriangles(p.getTriangles());

 }

 private List<Triangle> getTriangles()

 { return this.tri; }

 private void setTriangles(List<Triangle> tri)

 { this.tri = tri; }

31

alias: no new List
created

Test Your Knowledge
1. Suppose you have a PolygonalModel p1 that has

100 Triangles. What does the following code print?

 PolygonalModel p2 = new PolygonalModel(p1);

 p2.clear();

 System.out.println(p2.size());

 System.out.println(p1.size());

32

X Owns its Collection: Shallow Copy
 if X owns its collection but not the objects in the

collection then the copy constructor can perform a
shallow copy of the collection

 a shallow copy of a collection means
 X creates a new collection
 the references in the collection are aliases for references in

the other collection

33

X Owns its Collection: Shallow Copy

 the hard way to perform a shallow copy

34

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>();
for(Date d : dates)
{
 sCopy.add(d);
}

shallow copy: new List
created but elements
are all aliases

add does not create
new objects

X Owns its Collection: Shallow Copy

 the easy way to perform a shallow copy

35

// assume there is an ArrayList<Date> dates
ArrayList<Date> sCopy = new ArrayList<Date>(dates);

X Owns its Collection: Deep Copy
 if X owns its collection and the objects in the

collection then the copy constructor must perform a
deep copy of the collection

 a deep copy of a collection means
 X creates a new collection
 the references in the collection are references to new

objects (that are copies of the objects in other collection)

36

X Owns its Collection: Deep Copy

 how to perform a deep copy

37

// assume there is an ArrayList<Date> dates
ArrayList<Date> dCopy = new ArrayList<Date>();
for(Date d : dates)
{
 dCopy.add(new Date(d.getTime());
}

deep copy: new List
created and new
elements created

constructor invocation
creates a new object

	Composition (Part 2)
	Price of Defensive Copying
	Period Class
	Period Class
	Period Class
	Slide Number 6
	Test Your Knowledge
	Slide Number 8
	Test Your Knowledge
	Slide Number 10
	Test Your Knowledge
	Slide Number 12
	Test Your Knowledge
	Privacy Leaks
	Consequences of Privacy Leaks
	Consequences of Privacy Leaks
	Consequences of Privacy Leaks
	Recipe for Immutability
	Immutability and Composition
	Collections as Attributes
	Motivation
	What Does a Collection Hold?
	Test Your Knowledge
	Student Class (from notes)
	PolygonalModel Class
	Iterable Interface
	PolygonalModel
	PolygonalModel
	Collections as Attributes
	X Shares its Collection with other Xs
	PolygonalModel Copy Constructor 1
	Test Your Knowledge
	X Owns its Collection: Shallow Copy
	X Owns its Collection: Shallow Copy
	X Owns its Collection: Shallow Copy
	X Owns its Collection: Deep Copy
	X Owns its Collection: Deep Copy

