
Mixing Static and Non-static

Singleton

1

Singleton Pattern

2

 “There can be only one.”
 Connor MacLeod, Highlander

Singleton Pattern

3

 a singleton is a class that is instantiated exactly once
 singleton is a well-known design pattern that can be

used when you need to:
1. ensure that there is one, and only one*, instance of a class,

and
2. provide a global point of access to the instance
 any client that imports the package containing the singleton

class can access the instance

[notes 3.4] *or possibly zero

One and Only One

4

 how do you enforce this?
 need to prevent clients from creating instances of the

singleton class
 private constructors

 the singleton class should create the one instance of itself
 note that the singleton class is allowed to call its own private

constructors
 need a static attribute to hold the instance

A Silly Example: Version 1

5

package xmas;

public class Santa

{

 // whatever fields you want for santa...

 public static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize attributes here... }

}

uses a public field that
all clients can access

6

import xmas;

// client code in a method somewhere ...
public void gimme()
{
 Santa.INSTANCE.givePresent();
}

A Silly Example: Version 2

7

package xmas;

public class Santa

{

 // whatever fields you want for santa...

 private static final Santa INSTANCE = new Santa();

 private Santa()

 { // initialize attributes here... }

}

uses a private field; how
do clients access the field?

Global Access

8

 how do clients access the singleton instance?
 by using a static method

 note that clients only need to import the package

containing the singleton class to get access to the
singleton instance
 any client method can use the singleton instance without

mentioning the singleton in the parameter list

A Silly Example (cont)

9

package xmas;

public class Santa {

 private int numPresents;
 private static final Santa INSTANCE = new Santa();

 private Santa()
 { // initialize fields here... }

 public static Santa getInstance()
 { return Santa.INSTANCE; }

 public Present givePresent() {
 Present p = new Present();
 this.numPresents--;
 return p;
 }
}

uses a private field; how
do clients access the field?

clients use a public
static factory method

10

import xmas;

// client code in a method somewhere ...
public void gimme()
{
 Santa.getInstance().givePresent();
}

Enumerations
 an enumeration is is a special data type that enables

for a variable to be a set of predefined constants
 the variable must be equal to one of the values that

have been predefined for it
 e.g., compass directions

 NORTH, SOUTH, EAST, and WEST
 days of the week

 MONDAY, TUESDAY, WEDNESDAY, etc.
 playing card suits

 CLUBS, DIAMONDS, HEARTS, SPADES

 useful when you have a fixed set of constants

11

A Silly Example: Version 3

12

package xmas;

public enum Santa

{

 // whatever fields you want for santa...

 INSTANCE;

 private Santa()

 { // initialize attributes here... }

}

singleton as an
enumeration

will call the private
default constructor

13

import xmas;

// client code in a method somewhere ...
public void gimme()
{
 Santa.INSTANCE.givePresent();
}

same usage as public
field (Version 1)

Singleton as an enumeration
 considered the preferred approach for implementing a

singleton
 for reasons beyond the scope of CSE1030

14

Applications
 singletons should be uncommon
 typically used to represent a system component that is

intrinsically unique
 window manager
 file system
 logging system

15

Logging

16

 when developing a software program it is often useful
to log information about the runtime state of your
program
 similar to flight data recorder in an airplane
 a good log can help you find out what went wrong in your

program
 problem: your program may have many classes, each of

which needs to know where the single logging object is
 global point of access to a single object == singleton

 Java logging API is more sophisticated than this
 but it still uses a singleton to manage logging
 java.util.logging

Lazy Instantiation

17

 notice that the previous singleton implementation
always creates the singleton instance whenever the
class is loaded
 if no client uses the instance then it was created needlessly

 it is possible to delay creation of the singleton instance
until it is needed by using lazy instantiation
 only works for version 2

Lazy Instantiation as per Notes

18

public class Santa {

 private static Santa INSTANCE = null;

 private Santa()

 { // ... }

 public static Santa getInstance()

 {

 if (Santa.INSTANCE == null) {

 Santa.INSTANCE = new Santa();

 }

 return Santa.INSTANCE;

 }

}

Mixing Static and Non-static

Multiton

19

Goals for Today

20

 Multiton
 review maps
 static factory methods

Singleton UML Class Diagram

21

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

One Instance per State

22

 the Java language specification guarantees that
identical String literals are not duplicated

 prints: same object? true

 the compiler ensures that identical String literals all
refer to the same object
 a single instance per unique state

// client code somewhere

String s1 = "xyz";
String s2 = "xyz";

// how many String instances are there?
System.out.println("same object? " + (s1 == s2));

[notes 3.5]

Multiton

23

 a singleton class manages a single instance of the class
 a multiton class manages multiple instances of the

class

 what do you need to manage multiple instances?
 a collection of some sort

 how does the client request an instance with a
particular state?
 it needs to pass the desired state as arguments to a method

Singleton vs Multiton UML Diagram

24

Singleton

- INSTANCE : Singleton
...

- Singleton()

+ getInstance() : Singleton
...

Multiton

- instances : Map
...

- Multiton()

+ getInstance(Object) : Multiton
...

Singleton vs Multiton

25

 Singleton
 one instance

private static final Santa INSTANCE = new Santa();

 zero-parameter accessor

public static Santa getInstance()

Singleton vs Multiton

26

 Multiton
 multiple instances (each with unique state)

private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

 accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,
 int exchangeCode,
 int stationCode)

Map

27

 a map stores key-value pairs
Map<String, PhoneNumber>

 values are put into the map using the key

key type value type

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648"

m.put(key, ago);

[AJ 16.2]

28

 values can be retrieved from the map using only the key
 if the key is not in the map the value returned is null

// client code somewhere
Map<String, PhoneNumber> m =
 new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago);

PhoneNumber gallery = m.get(key); // == ago
PhoneNumber art = m.get("4169796648"); // == ago

PhoneNumber pizza = m.get("4169671111"); // == null

29

 a map is not allowed to hold duplicate keys
 if you re-use a key to insert a new object, the existing object

corresponding to the key is removed and the new object inserted
 // client code somewhere

Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>;

PhoneNumber ago = new PhoneNumber(416, 979, 6648);
String key = "4169796648";

m.put(key, ago); // add ago
System.out.println(m);

m.put(key, new PhoneNumber(905, 760, 1911)); // replaces ago
System.out.println(m);

{4169796648=(416) 979-6648}
{4169796648=(905) 760-1911}

prints

Mutable Keys

30

 from
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

 Note: great care must be exercised if mutable objects are
used as map keys. The behavior of a map is not specified if
the value of an object is changed in a manner that affects
equals comparisons while the object is a key in the map.

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html

31

public class MutableKey

{

 public static void main(String[] args)

 {

 Map<Date, String> m = new TreeMap<Date, String>();

 Date d1 = new Date(100, 0, 1);

 Date d2 = new Date(100, 0, 2);

 Date d3 = new Date(100, 0, 3);

 m.put(d1, "Jan 1, 2000");

 m.put(d2, "Jan 2, 2000");

 m.put(d3, "Jan 3, 2000");

 d2.setYear(101); // mutator

 System.out.println("d1 " + m.get(d1)); // d1 Jan 1, 2000

 System.out.println("d2 " + m.get(d2)); // d2 Jan 2, 2000

 System.out.println("d3 " + m.get(d3)); // d3 null

 }

} change TreeMap to HashMap and see what happens

don't mutate keys;
bad things will happen

Making PhoneNumber a Multiton

32

1. multiple instances (each with unique state)

 private static final Map<String, PhoneNumber>

 instances = new TreeMap<String, PhoneNumber>();

2. accessor needs to provide state information

public static PhoneNumber getInstance(int areaCode,

 int exchangeCode,

 int stationCode)

 getInstance() will get an instance from instances if the
instance is in the map; otherwise, it will create the new
instance and put it in the map

Making PhoneNumber a Multiton

33

3. require private constructors
 to prevent clients from creating instances on their own

 clients should use getInstance()

4. require immutability of PhoneNumbers
 to prevent clients from modifying state, thus making the

keys inconsistent with the PhoneNumbers stored in the map
 recall the recipe for immutability...

34

public class PhoneNumber implements Comparable<PhoneNumber>

{

 private static final Map<String, PhoneNumber> instances =

 new TreeMap<String, PhoneNumber>();

 private final short areaCode;

 private final short exchangeCode;

 private final short stationCode;

 private PhoneNumber(int areaCode,

 int exchangeCode,

 int stationCode)

 { // identical to previous versions }

35

 public static PhoneNumber getInstance(int areaCode,

 int exchangeCode,

 int stationCode)

 {

 String key = "" + areaCode + exchangeCode + stationCode;

 PhoneNumber n = PhoneNumber.instances.get(key);

 if (n == null)

 {

 n = new PhoneNumber(areaCode, exchangeCode, stationCode);

 PhoneNumber.instances.put(key, n);

 }

 return n;

 }

 // remainder of PhoneNumber class ...

why is validation not needed?

36

public class PhoneNumberClient {

 public static void main(String[] args)

 {

 PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100);

 PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100);

 PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309);

 System.out.println("x equals y: " + x.equals(y) +

 " and x == y: " + (x == y));

 System.out.println("x equals z: " + x.equals(z) +

 " and x == z: " + (x == z));

 }

}

x equals y: true and x == y: true
x equals z: false and x == z: false

Bonus Content

37

 notice that Singleton and Multiton use a static method
to return an instance of a class

 a static method that returns an instance of a class is
called a static factory method
 factory because, as far as the client is concerned, the

method creates an instance
 similar to a constructor

Static Factory Methods

38

 many examples
 java.lang.Integer

public static Integer valueOf(int i)
 Returns a Integer instance representing the specified int value.

 java.util.Arrays

public static int[] copyOf(int[] original, int newLength)
 Copies the specified array, truncating or padding with zeros (if

necessary) so the copy has the specified length.

Java API Static Factory Methods

39

 java.lang.String
 public static String format(String format, Object... args)

 Returns a formatted string using the specified format string and
arguments.

 cse1030.Complex
 public static Complex valueOf(String s)

 Returns a complex number holding the value represented by the given
string.

40

 you can give meaningful names to static factory methods
(unlike constructors)

public class Person {

 private String name;

 private int age;

 private int weight;

 public Person(String name, int age, int weight) { // ... }

 public Person(String name, int age) { // ... }

 public Person(String name, int weight) { // ... }

 // ...

}
illegal overload: same signature

41

public class Person { // modified from PEx's

 // attributes ...

 public Person(String name, int age, int weight) { // ... }

 public static Person withAge(String name, int age) {

 return new Person(name, age, DEFAULT_WEIGHT);

 }

 public static Person withWeight(String name, int weight) {

 return new Person(name, DEFAULT_AGE, weight);

 }

}

A Singleton Puzzle: What is Printed?

42

public class Elvis {

 public static final Elvis INSTANCE = new Elvis();

 private final int beltSize;

 private static final int CURRENT_YEAR =

 Calendar.getInstance().get(Calendar.YEAR);

 private Elvis() { this.beltSize = CURRENT_YEAR – 1930; }

 public int getBeltSize() { return this.beltSize; }

 public static void main(String[] args) {

 System.out.println("Elvis has a belt size of " +

 INSTANCE.getBeltSize());

 }

}
from Java Puzzlers by Joshua Bloch and Neal Gafter

	Mixing Static and Non-static
	Singleton Pattern
	Singleton Pattern
	One and Only One
	A Silly Example: Version 1
	Slide Number 6
	A Silly Example: Version 2
	Global Access
	A Silly Example (cont)
	Slide Number 10
	Enumerations
	A Silly Example: Version 3
	Slide Number 13
	Singleton as an enumeration
	Applications
	Logging
	Lazy Instantiation
	Lazy Instantiation as per Notes
	Mixing Static and Non-static
	Goals for Today
	Singleton UML Class Diagram
	One Instance per State
	Multiton
	Singleton vs Multiton UML Diagram
	Singleton vs Multiton
	Singleton vs Multiton
	Map
	Slide Number 28
	Slide Number 29
	Mutable Keys
	Slide Number 31
	Making PhoneNumber a Multiton
	Making PhoneNumber a Multiton
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Bonus Content
	Static Factory Methods
	Java API Static Factory Methods
	Slide Number 40
	Slide Number 41
	A Singleton Puzzle: What is Printed?

