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 “There can be only one.” 
 Connor MacLeod, Highlander 

 



Singleton Pattern 
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 a singleton is a class that is instantiated exactly once 
 singleton is a well-known design pattern that can be 

used when you need to:  
1. ensure that there is one, and only one*, instance of a class, 

and 
2. provide a global point of access to the instance 
 any client that imports the package containing the singleton 

class can access the instance 

[notes 3.4] *or possibly zero 



One and Only One 
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 how do you enforce this? 
 need to prevent clients from creating instances of the 

singleton class 
 private constructors 

 the singleton class should create the one instance of itself 
 note that the singleton class is allowed to call its own private 

constructors 
 need a static attribute to hold the instance 



A Silly Example: Version 1 
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package xmas; 

 

public class Santa  

{ 

  // whatever fields you want for santa... 

 

  public static final Santa INSTANCE = new Santa(); 

 

  private Santa() 

  { // initialize attributes here... } 

 

} 

uses a public field that 
all clients can access 
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import xmas; 
 
// client code in a method somewhere ... 
public void gimme() 
{ 
  Santa.INSTANCE.givePresent(); 
} 



A Silly Example: Version 2 
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package xmas; 

 

public class Santa  

{ 

  // whatever fields you want for santa... 

 

  private static final Santa INSTANCE = new Santa(); 

 

  private Santa() 

  { // initialize attributes here... } 

 

} 

uses a private field; how 
do clients access the field? 



Global Access 
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 how do clients access the singleton instance? 
 by using a static method 

 
 note that clients only need to import the package 

containing the singleton class to get access to the 
singleton instance 
 any client method can use the singleton instance without 

mentioning the singleton in the parameter list 



A Silly Example (cont) 
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package xmas; 
 
public class Santa { 

  private int numPresents; 
  private static final Santa INSTANCE = new Santa(); 
 
  private Santa() 
  { // initialize fields here... } 
 

  public static Santa getInstance() 
  { return Santa.INSTANCE; } 
 
  public Present givePresent() { 
    Present p = new Present();  
    this.numPresents--; 
    return p;  
  } 
} 

uses a private field; how 
do clients access the field? 

clients use a public 
static factory method 
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import xmas; 
 
// client code in a method somewhere ... 
public void gimme() 
{ 
  Santa.getInstance().givePresent(); 
} 



Enumerations 
 an enumeration is is a special data type that enables 

for a variable to be a set of predefined constants 
 the variable must be equal to one of the values that 

have been predefined for it 
 e.g., compass directions 

 NORTH, SOUTH, EAST, and WEST 
 days of the week 

 MONDAY, TUESDAY, WEDNESDAY, etc. 
 playing card suits 

 CLUBS, DIAMONDS, HEARTS, SPADES 

 useful when you have a fixed set of constants 
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A Silly Example: Version 3 
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package xmas; 

 

public enum Santa  

{ 

  // whatever fields you want for santa... 

 

  INSTANCE; 

 

  private Santa() 

  { // initialize attributes here... } 

 

} 

singleton as an 
enumeration 

will call the private 
default constructor 
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import xmas; 
 
// client code in a method somewhere ... 
public void gimme() 
{ 
  Santa.INSTANCE.givePresent(); 
} 

same usage as public 
field (Version 1) 



Singleton as an enumeration  
 considered the preferred approach for implementing a 

singleton 
 for reasons beyond the scope of CSE1030 
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Applications 
 singletons  should be uncommon 
 typically used to represent a system component that is 

intrinsically unique 
 window manager 
 file system 
 logging system 
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Logging 
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 when developing a software program it is often useful 
to log information about the runtime state of your 
program 
 similar to flight data recorder in an airplane 
 a good log can help you find out what went wrong in your 

program 
 problem: your program may have many classes, each of 

which needs to know where the single logging object is 
 global point of access to a single object == singleton 

 Java logging API is more sophisticated than this 
 but it still uses a singleton to manage logging 
 java.util.logging 



Lazy Instantiation 
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 notice that the previous singleton implementation 
always creates the singleton instance whenever the 
class is loaded 
 if no client uses the instance then it was created needlessly 

 it is possible to delay creation of the singleton instance 
until it is needed by using lazy instantiation 
 only works for version 2 



Lazy Instantiation as per Notes 
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public class Santa { 

  private static Santa INSTANCE = null; 

 

  private Santa() 

  { // ... } 

 

  public static Santa getInstance() 

  { 

    if (Santa.INSTANCE == null) { 

      Santa.INSTANCE = new Santa(); 

    } 

    return Santa.INSTANCE; 

  } 

} 



Mixing Static and Non-static 

Multiton 
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Goals for Today 
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 Multiton 
 review maps 
 static factory methods 



Singleton UML Class Diagram 
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Singleton 

- INSTANCE : Singleton 
... 

- Singleton() 

+ getInstance() : Singleton 
... 



One Instance per State 
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 the Java language specification guarantees that 
identical String literals are not duplicated 
 
 
 
 
 
 prints: same object? true  

 the compiler ensures that identical String literals all 
refer to the same object 
 a single instance per unique state 

// client code somewhere 
 
String s1 = "xyz"; 
String s2 = "xyz"; 
 
// how many String instances are there? 
System.out.println("same object? " + (s1 == s2) ); 
 

[notes 3.5] 



Multiton 
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 a singleton class manages a single instance of the class 
 a multiton class manages multiple instances of the 

class 
 

 what do you need to manage multiple instances? 
 a collection of some sort 
 

 how does the client request an instance with a 
particular state? 
 it needs to pass the desired state as arguments to a method 



Singleton vs Multiton UML Diagram 

24 

Singleton 

- INSTANCE : Singleton 
... 

- Singleton() 

+ getInstance() : Singleton 
... 

Multiton 

- instances : Map 
... 

- Multiton() 

+ getInstance(Object) : Multiton 
... 



Singleton vs Multiton 
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 Singleton 
 one instance 

 
private static final Santa INSTANCE = new Santa();  

 
 zero-parameter accessor 

 
public static Santa getInstance()  



Singleton vs Multiton 
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 Multiton 
 multiple instances (each with unique state) 

 
private static final Map<String, PhoneNumber> 

  instances = new TreeMap<String, PhoneNumber>();  

 
 accessor needs to provide state information 

 
public static PhoneNumber getInstance(int areaCode, 
                                    int exchangeCode, 
                                    int stationCode)  



Map 
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 a map stores key-value pairs 
Map<String, PhoneNumber>   

 
 values are put into the map using the key 

key type value type 

// client code somewhere 
Map<String, PhoneNumber> m =  
                      new TreeMap<String, PhoneNumber>; 
 
PhoneNumber ago = new PhoneNumber(416, 979, 6648); 
String key = "4169796648" 
 
m.put(key, ago); 

[AJ 16.2] 
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 values can be retrieved from the map using only the key 
 if the key is not in the map the value returned is null  

// client code somewhere 
Map<String, PhoneNumber> m =  
                      new TreeMap<String, PhoneNumber>; 
 
PhoneNumber ago = new PhoneNumber(416, 979, 6648); 
String key = "4169796648"; 
 
m.put(key, ago); 
 
PhoneNumber gallery = m.get(key);            // == ago 
PhoneNumber art = m.get("4169796648");       // == ago 
 
PhoneNumber pizza = m.get("4169671111");     // == null 
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 a map is not allowed to hold duplicate keys 
 if you re-use a key to insert a new object, the existing object 

corresponding to the key is removed and the new object inserted 
 // client code somewhere 

Map<String, PhoneNumber> m = new TreeMap<String, PhoneNumber>; 
 
PhoneNumber ago = new PhoneNumber(416, 979, 6648); 
String key = "4169796648"; 
 
m.put(key, ago);                               // add ago 
System.out.println(m); 
 
m.put(key, new PhoneNumber(905, 760, 1911));   // replaces ago 
System.out.println(m); 

{4169796648=(416) 979-6648} 
{4169796648=(905) 760-1911} 
 

prints 



Mutable Keys 
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 from 
http://docs.oracle.com/javase/7/docs/api/java/util/Map.html 
 

 Note: great care must be exercised if mutable objects are 
used as map keys. The behavior of a map is not specified if 
the value of an object is changed in a manner that affects 
equals comparisons while the object is a key in the map. 

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html
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public class MutableKey  

{ 

  public static void main(String[] args) 

  { 

    Map<Date, String> m = new TreeMap<Date, String>(); 

    Date d1 = new Date(100, 0, 1); 

    Date d2 = new Date(100, 0, 2); 

    Date d3 = new Date(100, 0, 3); 

    m.put(d1, "Jan 1, 2000"); 

    m.put(d2, "Jan 2, 2000"); 

    m.put(d3, "Jan 3, 2000"); 

    d2.setYear(101);           // mutator 

    System.out.println("d1 " + m.get(d1));  // d1 Jan 1, 2000 

    System.out.println("d2 " + m.get(d2));  // d2 Jan 2, 2000 

    System.out.println("d3 " + m.get(d3));  // d3 null 

  } 

} change TreeMap to HashMap and see what happens 

don't mutate keys; 
bad things will happen 



Making PhoneNumber a Multiton 
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1. multiple instances (each with unique state) 
 

 private static final Map<String, PhoneNumber> 

  instances = new TreeMap<String, PhoneNumber>();  
 

2. accessor needs to provide state information 
 
public static PhoneNumber getInstance(int areaCode, 

                                     int exchangeCode, 

                                     int stationCode)  

 getInstance() will get an instance from instances if the 
instance is in the map; otherwise, it will create the new 
instance and put it in the map 



Making PhoneNumber a Multiton 
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3. require private constructors 
 to prevent clients from creating instances on their own 

 clients should use getInstance()  

 
4. require immutability of PhoneNumbers 
 to prevent clients from modifying state, thus making the 

keys inconsistent with the PhoneNumbers stored in the map 
 recall the recipe for immutability... 
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public class PhoneNumber implements Comparable<PhoneNumber>  

{ 

  private static final Map<String, PhoneNumber> instances =  

                         new TreeMap<String, PhoneNumber>(); 

 

  private final short areaCode; 

  private final short exchangeCode; 

  private final short stationCode; 

 

  private PhoneNumber(int areaCode, 

                      int exchangeCode, 

                      int stationCode) 

  { // identical to previous versions } 
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  public static PhoneNumber getInstance(int areaCode, 

                                        int exchangeCode, 

                                        int stationCode) 

  { 

    String key = "" + areaCode + exchangeCode + stationCode; 

    PhoneNumber n = PhoneNumber.instances.get(key); 

    if (n == null) 

    { 

      n = new PhoneNumber(areaCode, exchangeCode, stationCode); 

      PhoneNumber.instances.put(key, n); 

    } 

    return n; 

  } 

  // remainder of PhoneNumber class ... 

why is validation not needed? 
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public class PhoneNumberClient { 

 

  public static void main(String[] args)   

  { 

    PhoneNumber x = PhoneNumber.getInstance(416, 736, 2100); 

    PhoneNumber y = PhoneNumber.getInstance(416, 736, 2100); 

    PhoneNumber z = PhoneNumber.getInstance(905, 867, 5309); 

 

    System.out.println("x equals y: " + x.equals(y) + 

                      " and x == y: " + (x == y));  

 

    System.out.println("x equals z: " + x.equals(z) + 

                      " and x == z: " + (x == z)); 

  } 

} 

x equals y: true and x == y: true 
x equals z: false and x == z: false 



Bonus Content 
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 notice that Singleton and Multiton use a static method 
to return an instance of a class 

 a static method that returns an instance of a class is 
called a static factory method  
 factory because, as far as the client is concerned, the 

method creates an instance 
 similar to a constructor 



Static Factory Methods 
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 many examples 
 java.lang.Integer  

public static Integer valueOf(int i)  
 Returns a Integer instance representing the specified int value. 

 
 java.util.Arrays  

public static int[] copyOf(int[] original, int newLength)  
 Copies the specified array, truncating or padding with zeros (if 

necessary) so the copy has the specified length. 
 



Java API Static Factory Methods 
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 java.lang.String  
 public static String format(String format, Object... args)  

 Returns a formatted string using the specified format string and 
arguments.  
 

 cse1030.Complex  
 public static Complex valueOf(String s)  

 Returns a complex number holding the value represented by the given 
string. 
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 you can give meaningful names to static factory methods 
(unlike constructors) 

 

public class Person { 

  private String name; 

  private int age; 

  private int weight; 
 

  public Person(String name, int age, int weight) { // ... } 
 

  public Person(String name, int age) { // ... } 
 

  public Person(String name, int weight) { // ... } 

  // ... 

} 
illegal overload: same signature 



41 

 

public class Person {  // modified from PEx's 

  // attributes ... 
 

  public Person(String name, int age, int weight) { // ... } 

 

  public static Person withAge(String name, int age) { 

    return new Person(name, age, DEFAULT_WEIGHT); 

  } 

 

  public static Person withWeight(String name, int weight) {  

    return new Person(name, DEFAULT_AGE, weight);  

  } 

} 



A Singleton Puzzle: What is Printed? 
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public class Elvis { 

  public static final Elvis INSTANCE = new Elvis(); 

  private final int beltSize; 

  private static final int CURRENT_YEAR = 

    Calendar.getInstance().get(Calendar.YEAR); 
 

  private Elvis() { this.beltSize = CURRENT_YEAR – 1930; } 
 

  public int getBeltSize() { return this.beltSize; } 
 

  public static void main(String[] args) { 

    System.out.println("Elvis has a belt size of " + 

                        INSTANCE.getBeltSize()); 

  } 

} 
from Java Puzzlers by Joshua Bloch and Neal Gafter 
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