
JUnit
 JUnit is a testing framework for Java

 A framework is a semi-complete application. A

framework provides a reusable, common structure to
share among applications. Developers incorporate the
framework into their own application and extend it to
meet their specific needs"
 from the book JUnit in Action

1

JUnit
 JUnit provides a way for creating:
 test cases

 a class that contains one or more tests
 test suites

 a group of tests
 test runner

 a way to automatically run test suites

 in-class demo of JUnit in eclipse

2

3

package cse1030.games;

import static org.junit.Assert.*;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;

public class YahtzeeTest {

 @Test
 public void threeOfAKind() {
 // make a list of 5 dice that are 3 of a kind
 List<Die> dice = new ArrayList<Die>();
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 1)); // 1
 dice.add(new Die(6, 2)); // 2
 dice.add(new Die(6, 3)); // 3

 assertTrue(Yahtzee.isThreeOfAKind(dice));
 }

}

JUnit
 notice that our test tests one specific three-of-a-kind
 1, 1, 1, 2, 3

 shouldn't we test all possible three-of-a-kinds?
 or at least more three-of-a-kinds

 how can you generate a list of dice that is guaranteed

to contain three-of-a-kind?

4

5

 @Test
 public void testIsThreeOfAKind() {
 for (int i = 1; i <= 6; i++) {
 Die d1 = new Die(6, i);
 Die d2 = new Die(6, i);
 Die d3 = new Die(6, i);
 for (int j = 1; j <= 6; j++) {
 Die d4 = new Die(6, j);
 for (int k = 1; k <= 6; k++) {
 Die d5 = new Die(6, k);
 List<Die> dice = new ArrayList<Die>();
 dice.add(d1);
 dice.add(d2);
 dice.add(d3);
 dice.add(d4);
 dice.add(d5);
 Collections.shuffle(dice);
 assertTrue(Yahtzee.isThreeOfAKind(dice));
 }
 }
 }
 }

JUnit
 how many variations of three-of-a-kind are tested in

our new test?
 how many ways can you roll three-of-a-kind using five

dice?

6

JUnit
 we are now somewhat confident that our method

returns true if the list contains a three-of-a-kind
 but we still have not tested if our method returns
false if the list does not contain a three-of-a-kind

 how can you generate a list of dice that is guaranteed
to not contain three-of-a-kind?

7

8

 @Test
 public void testIsNotThreeOfAKind() {
 final int TRIALS = 1000;
 for (int t = 0; t < TRIALS; t++) {
 List<Die> twelveDice = new ArrayList<Die>();
 for (int i = 1; i <= 6; i++) {
 twelveDice.add(new Die(6, i));
 twelveDice.add(new Die(6, i));
 }
 Collections.shuffle(twelveDice);
 List<Die> dice = twelveDice.subList(0, 5);
 assertFalse(Yahtzee.isThreeOfAKind(dice));
 }
 }

Explanation of Previous Slide
 a trick is to create a list of 12 dice where there are:
 2 ones,
 2 twos,
 2 threes,
 2 fours,
 2 fives, and
 2 sixes

 shuffle the list (so that the dice appear in some
random order)

 use the first 5 dice

9

Classes (Part 1)

Implementing non-static features

10

Goals
 implement a small immutable class with non-static

attributes and methods
 recipe for immutability
 this

 toString method
 equals method

11

Value Type Classes

12

 a value type is a class that represents a value
 examples of values: name, date, colour, mathematical

vector
 Java examples: String, Date, Integer

 the objects created from a value type class can be:
 mutable: the state of the object can change
 Date

 immutable: the state of the object is constant once it is
created
 String, Integer (and all of the other primitive wrapper

classes)

Immutable Classes

13

 a class defines an immutable type if an instance of the
class cannot be modified after it is created
 each instance has its own constant state

 more precisely, the externally visible state of each object appears
to be constant

 Java examples: String, Integer (and all of the other
primitive wrapper classes)

 advantages of immutability versus mutability
 easier to design, implement, and use
 can never be put into an inconsistent state after creation

North American Phone Numbers
 North American Numbering Plan is the standard used

in Canada and the USA for telephone numbers
 telephone numbers look like

416-736-2100

14

area
code

exchange
code

station
code

Designing a Simple Immutable Class

15

 PhoneNumber API

PhoneNumber

- areaCode : short
- exchangeCode : short
- stationCode : short

+ PhoneNumber(int, int, int)
+ equals(Object) : boolean
+ getAreaCode() : short
+ getExchangeCode() : short
+ getStationCode() : short
+ toString() : String

none of these
features are static

16

package cse1030;

public class PhoneNumber {

}

Recipe for Immutability
 the recipe for immutability in Java is described by

Joshua Bloch in the book Effective Java*

1. Do not provide any methods that can alter the state
of the object

2. Prevent the class from being extended
3. Make all fields final
4. Make all fields private
5. Prevent clients from obtaining a reference to any

mutable fields

17 *highly recommended reading if you plan on becoming a Java programmer

revisit when we talk
about inheritance

revisit when we talk
about composition

Recipe for Immutability 1

18

1. Do not provide any methods that can alter the state
of the object

 methods that modify state are called mutators
 Java example of a mutator:

import java.util.Calendar;

public class CalendarClient {
 public static void main(String[] args)
 {
 Calendar now = Calendar.getInstance();
 // set hour to 5am
 now.set(Calendar.HOUR_OF_DAY, 5);
 }
}

Recipe for Immutability 2

19

2. Prevent the class from being extended
 one way to do this is to mark the class as final

 a final class cannot be extended using inheritance
 don't confuse final variable and final classes

 the reason for this step will become clear in a couple
of weeks

20

package cse1030;

public final class PhoneNumber {

}

Recipe for Immutability 3

21

3. Make all fields final
 recall that final means that the field can only be

assigned to once
 final fields make your intent clear that the class is

immutable

22

package cse1030;

public final class PhoneNumber {
 final int areaCode;
 final int exchangeCode;
 final int stationCode;

}

Recipe for Immutability 4

23

4. Make all fields private
 this applies to all public classes (including mutable

classes)
 in public classes, strongly prefer private fields
 and avoid using public fields

 private fields support encapsulation
 because they are not part of the API, you can change them (even

remove them) without affecting any clients
 the class controls what happens to private fields
 it can prevent the fields from being modified to an inconsistent state

24

package cse1030;

public final class PhoneNumber {
 private final int areaCode;
 private final int exchangeCode;
 private final int stationCode;

}

Recipe for Immutability 5

25

5. Prevent clients from obtaining a reference to any
mutable fields

 recall that final fields have constant state only if the
type of the attribute is a primitive or is immutable

 if you allow a client to get a reference to a mutable field,
the client can change the state of the field, and hence, the
state of your immutable class

 revisit this point when we talk about composition
 also, none of our fields are reference types so we don't have to

worry about this point

this

26

 every non-static method of a class has an implicit
parameter called this

 recall that a non-static method requires an object to call
the method

 inside getAreaCode, this is a reference to object used to
invoke the method

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
int areaCode = num.getAreaCode(); // get the
 // area code that
 // belongs to num

getAreaCode

27

 how does the method getAreaCode() get the area
code for the correct instance?
 this is a reference to the calling object

 public int getAreaCode() {
 return this.areaCode;
 }

return the area code belonging
to the PhoneNumber object that
was used to invoke the method

getExchangeCode and getStationCode

28

 getExchangeCode() and getStationCode() are
very similar

return the exchange code belonging
to the PhoneNumber object that
was used to invoke the method

return the station code belonging
to the PhoneNumber object that
was used to invoke the method

 public int getExchangeCode() {
 return this.exchangeCode;
 }

 public int getStationCode() {
 return this.stationCode;
 }

toString()

29

 recall that every class extends java.lang.Object
 Object defines a method toString() that returns a
String representation of the calling object
 we can call toString() with our current PhoneNumber class

 this prints something like
phonenumber.PhoneNumber@19821f

// client of PhoneNumber

PhoneNumber num = new PhoneNumber(416, 736, 2100);
System.out.println(num.toString());

toString()

30

 toString() should return a concise but informative
representation that is easy for a person to read

 it is recommended that all subclasses override this
method
 this means that any non-utility class you write should

redefine the toString() method
 in this case, our new toString() method has the same

declaration as toString() in java.lang.Object

toString()

31

 it is "easy" to override toString() for our class

 @Override
 public String toString() {
 return String.format("(%1$03d) %2$03d-%3$04d",
 this.areaCode,
 this.exchangeCode,
 this.stationCode);
 }

Constructors

32

Constructors

33

 constructors are responsible for initializing instances
of a class
 usually, a constructor will set the fields of the object to:
 some reasonable default values, or
 some client specified values,
 or some combination of the two

[notes 2.2.3]

Constructors

34

 a constructor declaration looks a little bit like a
method declaration:
 the name of a constructor is the same as the class name
 a constructor may have an access modifier (but no other

modifiers)

35

 public PhoneNumber() {

 }

 public PhoneNumber(int areaCode,
 int exchangeCode,
 int stationCode) {

 }

the default constructor
(has no parameters)

a constructor with
three parameters

Constructors

36

 every constructor has an implicit this parameter
 the this parameter is a reference to the object that is

currently being constructed

37

 public PhoneNumber() {
 this.areaCode = 800;
 this.exchangeCode = 555;
 this.stationCode = 1111;
 }

 public PhoneNumber(int areaCode,
 int exchangeCode, int stationCode) {
 this.areaCode = areaCode;
 this.exchangeCode = exchangeCode;
 this.stationCode = stationCode;
 }

Bell Canada operator
phone number?

client specified
phone number

Constructors

38

 a constructor will often need to validate its arguments
 because you generally should avoid creating objects with

invalid state

 what are valid area codes, exchange codes, and station
codes?
 we will assume:
 must not be negative
 area code and exchange codes < 1,000
 station code < 10,000

 reality is more complicated...

39

 public PhoneNumber(int areaCode,
 int exchangeCode, int stationCode) {

 if (areaCode < 0 || areaCode > 999) {
 throw new IllegalArgumentException("bad area code");
 }
 if (exchangeCode < 0 || exchangeCode > 999) {
 throw new IllegalArgumentException("bad exchange code");
 }
 if (stationCode < 0 || stationCode > 9999) {
 throw new IllegalArgumentException("bad station code");
 }
 this.areaCode = areaCode;
 this.exchangeCode = exchangeCode;
 this.stationCode = stationCode;
 }

Comment on Immutability
 notice that our constructors make it impossible for a

client to create an invalid phone number
 also recall that our class is immutable
 i.e., the client cannot change a phone number once it is

created
 the above two features guarantee that all
PhoneNumber objects will be valid phone numbers

40

	JUnit
	JUnit
	Slide Number 3
	JUnit
	Slide Number 5
	JUnit
	JUnit
	Slide Number 8
	Explanation of Previous Slide
	Classes (Part 1)
	Goals
	Value Type Classes
	Immutable Classes
	North American Phone Numbers
	Designing a Simple Immutable Class
	Slide Number 16
	Recipe for Immutability
	Recipe for Immutability 1
	Recipe for Immutability 2
	Slide Number 20
	Recipe for Immutability 3
	Slide Number 22
	Recipe for Immutability 4
	Slide Number 24
	Recipe for Immutability 5
	this
	getAreaCode
	getExchangeCode and getStationCode
	toString()
	toString()
	toString()
	Constructors
	Constructors
	Constructors
	Slide Number 35
	Constructors
	Slide Number 37
	Constructors
	Slide Number 39
	Comment on Immutability

