Utilities (Part 2)

Implementing static features

Goals for Today

» learn about preventing class instantiation
» learn what a utility is in Java

» learn about implementing methods
» static methods
» pass-by-value

» Javadoc

Puzzle 2

» what does the following program print?

public class Puzzle02

{
public static void main(String[] args)

{

final long
MICROS_PER_DAY

final long
MILLIS PER_DAY = 24 * 60 * 60 * 1000;

System.out.printIin(MICROS_PER_DAY / MILLIS_PER_DAY);
¥

24 * 60 * 60 * 1000 * 1000;

}

prints 5
the problem occurs because the expression

24 * 60 * 60 * 1000 * 1000
evaluates to a number bigger than int can hold
86,400,000,000 > 2,147,483,647 (Integer.MAX VALUE)
called overflow
notice that the numbers in the expression are of type Int

Java will evaluate the expression using int even though the
constant MICROS_PER_DAY is of type long

solution: make sure that the first value matches the
destination type

24L * 60 * 60 * 1000 * 1000

Overflow

» several well known problems caused by issues related
to overflow

» Year 2000 problem
» Year 2038 problem

» Ariane 5 Flight 501

http://en.wikipedia.org/wiki/Year_2000_problem
http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

new Yahtzee Objects

» our Yahtzee API does not expose a constructor
» but

Yahtzee y = new Yahtzee();
is legal

» if you do not define any constructors, Java will generate a
default no-argument constructor for you

» e.g., we get the publ 1c constructor
public Yahtzee() { }

even though we did not implement it

Preventing Instantiation

» our Yahtzee API exposes only static constants
(and methods later on)
) 1ts state is constant

» there is no benefit in instantiating a Yahtzee object

» aclient can access the constants (and methods) without
creating a Yahtzee object

boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

» can prevent instantiation by declaring a private
constructor

Version 2 (prevent instantiation)

public class Yahtzee {
// fields
public static final int NUMBER_OF DICE = 5;

// constructors

// suppress default ctor for non-instantiation
private Yahtzee() {

}

[notes 1.2.3]

8

Version 2.1 (even better)

public class Yahtzee {
// fields
public static final int NUMBER_OF DICE = 5;

// constructors

// suppress default ctor for non-instantiation
private Yahtzee() {
throw new AssertionError();

}
}

[notes 1.2.3]

9

private

» private fields, constructors, and methods cannot
be accessed by clients
» they are not part of the class API

» private fields, constructors, and methods are
accessible only inside the scope of the class

» a class with only private constructors indicates to
clients that they cannot use new to create instances of

the class

10

Utilities
» in Java, a utility class is a class having only static fields
and static methods

» uses:
» group related methods on primitive values or arrays
» Java.lang.Mathor java.util_Arrays

» group static methods for objects that implement an
interface

» Java.util_Collections
» [notes1.6.1-1.6.3]
» group static methods on a final class

» more on this when we talk about inheritance

11

public class Yahtzee {
// fields
public static final int NUMBER_OF DICE = 5;

// constructors

// suppress default ctor for non-instantiation
private Yahtzee() {
throw new AssertionError();

}

public static boolean 1sThreeOfAKind(List<Die> dice) {
Collections.sort(dice);
boolean result =
dice.get(0).getValue() == dice.get(2).getvValue(Q ||
dice.get(l).getValue() == dice.get(3).getvValue(Q ||
dice.get(2).getvValue() == dice.get(4).getvValue(Q;
return result;
+
+

12

Method Sighatures

public static boolean i1sThreeOfAKInd(List<Die> dice)

» a method is a member that performs an action

» a method has a signature (name + number and types of the
parameters)

name number and types of parameters

A
[1

1
i1IsThreeOFfAKInd(List<Die>)
)

'
signature

\

» all method signatures in a class must be unique

13

Method Sighatures

» what happens if we try to introduce a second method

public static boolean

1sThreeOfAKInd(Col lection<Integer> dice) ?

» what about

public static boolean

i1sThreeOfAKInd(List<Integer> dice) ?

14

Methods

public static boolean 1sThreeOfAKInd(List<Die> dice)

» a method returns a typed value or void

boolean

» use return toindicate the value to be returned

public static boolean i1sThreeOfAKInd(List<Die> dice) {
Collections.sort(dice);
boolean result =
dice.get(0).getValue() == dice.get(2).getvValue(Q 1]
dice.get(l).getValue() == dice.get(3).getvValue(Q 1]
dice.get(2).getValue() == dice.get(4).getvValue();
return result;

}

15

Parameters

» sometimes called formal parameters

» for a method, the parameter names must be unique

» but a parameter can have the same name as an attribute
(see [notes 1.3.3])

» the scope of a parameter is the body of the method

16

static Methods

» a method that is static is a per-class member

» client does not need an object to invoke the method
» client uses the class name to access the method

boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

» static methods are also called class methods
» a static method can only use static fields of the class

[notes 1.2.4], [A] 249-255]

17

Invoking Methods

» a client invokes a method by passing arguments to the
method

» the types of the arguments must be compatible with the
types of parameters in the method signature

» the values of the arguments must satisty the preconditions
of the method contract [JBA 2.3.3]

List<Die> dice = new ArrayList<Die>();
for (int i = 0; i <5; i++) {
dice.add(new Die());
1 argument

boolean hasTriple = Yahtzee.isThreeOfAKInd(dice);

18

Pass-by-value

» Java uses pass-by-value to:
» transfer the value of the arguments to the method
» transfer the return value back to the client

» consider the following utility class and its client...

19

import type.lib.Fraction;
public class Doubler {

private Doubler() {
+

// tries to double Xx
public static void twice(int x) {
X =2 * X;

}

// tries to double T

public static void twice(Fraction) {
long numerator = f.getNumerator();
f.setNumerator(2 * numerator);

}
}

20

import type.lib.Fraction;
public class TestDoubler {
public static void main(String[] args) {
int a = 1;

Doubler.twice(a);

Fraction b = new Fraction(l, 2);
Doubler.twice(b);

System.out.printin(a);
System.out.printin(b);

21

Pass-by-value

» what is the output of the client program?
» try it and see

» an invoked method runs in its own area of memory
that contains storage for its parameters

» each parameter is initialized with the value of its
corresponding argument

22

Pass-by-value with Reference Types

Fraction b =

23

new Fraction(l, 2);

64
b
500
numer
denom

client

500

Fraction object

value of b is not the
Fraction 1/2

valueof bisa
reference to the
new
Fraction object

Pass-by-value with Reference Types

the value of b
is passed to the

64 client method
Fraction b = Doubler.twice

b 500
new Fraction(l, 2);
Doubler.twice(b);

500 | Fraction object

numer 1

denom 2

parameter F 600 | Doubler.twice

is an independent f 500
copy of the value
of argument b
(a reference)

24

Pass-by-value with Reference Types

64 client
500

Fraction b = b
new Fraction(l, 2);
Doubler.twice(b);

500 | Fraction object

Doubler.twice
numer £ 2 multiplies the
numerator of the
Fraction object by
2

denom 2

600 | Doubler.twice
f 500

25

Pass-by-value with Primitive Types

int a = 1;

26

64

client

1

value of a is the
integer value that
we stored

Pass-by-value with Primitive Types

int a = 1;

Doubler.twice(a);

27

parameter X
is an independent
copy of the value
of argument a
(a primitive)

64

800

client

1

this is a different
Doubler.twice
method than the
previous example

(now resides at
address 800)

Doubler.twice

1

the value of a
is passed to the
method
Doubler.twice

Pass-by-value with Reference Types

int a = 1;
Doubler.twice(a);

28

64

800

client

1

Doubler.twice

¥ 2

Doubler.twice
multiplies the value
of X by 2;
that's it, nothing
else happens

Pass-by-value

» Java uses pass-by-value for all types (primitive and
reference)

» an argument of primitive type cannot be changed by a
method

» an argument of reference type can have its state changed by
a method

» pass-by-value is used to return a value from a method
back to the client

29

Documenting Code

Javadoc

» documenting code was not a new idea when Java was
invented

» however, Java was the first major language to embed
documentation in the code and extract the documentation
into readable electronic APIs

» the tool that generates APl documents from comments
embedded in the code is called Javadoc

31

Javadoc

» Javadoc processes doc comments that immediately
precede a class, attribute, constructor or method
declaration

» doc comments delimited by /** and */

» doc comment written in HTML and made up of two parts
1. adescription

0 first sentence of description gets copied to the summary section
O only one description block; can use <p> to create separate
paragraphs
>. block tags
0 begin with @ (@param, @return, @exception)
O @pre. is non-standard (custom tag used in CSE1030)

32

Javadoc Guidelines

» http://www.oracle.com/technetwork/java/javase/documentation/inde
x-137868.html

» [notes1.5.1,1.5.2]

» precede every exported class, interface, constructor,
method, and attribute with a doc comment

» for methods the doc comment should describe the
contract between the method and the client
» preconditions ([notes 1.4], [JBA 2.3.3])
» postconditions ([notes 1.4], [JBA 2.3.3])

33

http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Javadoc Examples

» short in-class demo here
» see any lab exercise

34

35

Introduction to Testing

Testing

» testing code is a vital part of the development process

» the goal of testing is to find defects in your code

» Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for
showing their absence.

—Edsger W. Dijkstra

» how can we test our utility class?

» write a program that uses it and verify the result

http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

public class IsThreeOfAKIndTest {
public static void main(String[] args) {
// make a list of 5 dice that are 3 of a kind
// check 1T Yahtzee.i1sThreeOfAKind returns true

}
}

37

public class IsThreeOfAKiIndTest {

public static void main(String[] args) {
// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 2)); // 2
dice.add(new Die(6, 3)); // 3

// check i1f Yahtzee.isThreeOfAKind returns true

public class IsThreeOfAKIndTest {

public static void main(String[] args) {

// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();

}

}

39

dice.
dice.
dice.
dice.
dice.

add(new
add(new
add(new
add(new
add(new

Die(6,
Die(6,
Die(6,
Die(6,
Die(6,

1));
1));
1));
2));
3));

/7 1
/7 1
/7 1
// 2
// 3

// check 1T Yahtzee.i1sThreeOfAKind returns true
IT (Yahtzee.i1sThreeOfAKind(dice) == true) {
System.out.printIn('success);

}

public class IsThreeOfAKiIndTest {

public static void main(String[] args) {
// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();

40

dice.
dice.
dice.
dice.
dice.

add(new
add(new
add(new
add(new
add(new

Die(6,
Die(6,
Die(6,
Die(6,
Die(6,

1));
1));
1));
2));
3));

// 1
/7 1
/7 1
// 2
// 3

// check 1f Yahtzee.i1sThreeOfAKiInd returns false
iIT (Yahtzee.i1sThreeOfAKind(dice) == false) {
throw new RuntimeException("'FAILED: " +

dice + "

iIs a 3-of-a-kind");

Testing

» checking if a test fails and throwing an exception
makes it easy to find tests that fail

» because uncaught exceptions terminate the running
program

» unfortunately, stopping the test program might mean that
other tests remain unrunnable

» at least until you fix the broken test case

41

Unit Testing

» A unit test examines the behavior of a distinct unit of
work. Within a Java application, the "distinct unit of
work" is often (but not always) a single method. ... A
unit of work is a task that isn't directly dependent on
the completion of any other task."

» from the book JUnit in Action

42

JUnit

» JUnit is a testing framework for Java

» A framework is a semi-complete application. A
framework provides a reusable, common structure to
share among applications. Developers incorporate the
framework into their own application and extend it to
meet their specific needs"

» from the book JUnit in Action

143

JUnit

» JUnit provides a way for creating:
» test cases
» a class that contains one or more tests

» test suites
» a group of tests

» test runner

» a way to automatically run test suites

» in-class demo of JUnit in eclipse

44

package csel@30.games;

import static org.junit.Assert.*;

import java.util.ArraylList;
import java.util.List;

import org.junit.Test;

public class YahtzeeTest {

@Test

public void threeOfAKind() {
// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 1)); //
dice.add(new Die(6, 1)); //
dice.add(new Die(6, 2)); //
dice.add(new Die(6, 3)); //

W N R R

assertTrue(Yahtzee.isThreeOfAKind(dice));

45

	Utilities (Part 2)
	Goals for Today
	Puzzle 2
	Slide Number 4
	Overflow
	new Yahtzee Objects
	Preventing Instantiation
	Version 2 (prevent instantiation)
	Version 2.1 (even better)
	private
	Utilities
	Slide Number 12
	Method Signatures
	Method Signatures
	Methods
	Parameters
	static Methods
	Invoking Methods
	Pass-by-value
	Slide Number 20
	Slide Number 21
	Pass-by-value
	Pass-by-value with Reference Types
	Pass-by-value with Reference Types
	Pass-by-value with Reference Types
	Pass-by-value with Primitive Types
	Pass-by-value with Primitive Types
	Pass-by-value with Reference Types
	Pass-by-value
	Documenting Code
	Javadoc
	Javadoc
	Javadoc Guidelines
	Javadoc Examples
	Introduction to Testing
	Testing
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Testing
	Unit Testing
	JUnit
	JUnit
	Slide Number 45

