Utilities (Part 2)

Implementing static features



Goals for Today

» learn about preventing class instantiation
» learn what a utility is in Java

» learn about implementing methods
» static methods
» pass-by-value

» Javadoc



Puzzle 2

» what does the following program print?

public class Puzzle02

{
public static void main(String[] args)

{

final long
MICROS_PER_DAY

final long
MILLIS PER_DAY = 24 * 60 * 60 * 1000;

System.out.printIin(MICROS_PER_DAY / MILLIS_PER_DAY);
¥

24 * 60 * 60 * 1000 * 1000;

}



prints 5
the problem occurs because the expression

24 * 60 * 60 * 1000 * 1000
evaluates to a number bigger than int can hold
86,400,000,000 > 2,147,483,647 (Integer.MAX VALUE)
called overflow
notice that the numbers in the expression are of type Int

Java will evaluate the expression using int even though the
constant MICROS_PER_DAY is of type long

solution: make sure that the first value matches the
destination type

24L * 60 * 60 * 1000 * 1000



Overflow

» several well known problems caused by issues related
to overflow

» Year 2000 problem
» Year 2038 problem

» Ariane 5 Flight 501



http://en.wikipedia.org/wiki/Year_2000_problem
http://en.wikipedia.org/wiki/Year_2038_problem
http://en.wikipedia.org/wiki/Ariane_5_Flight_501

new Yahtzee Objects

» our Yahtzee API does not expose a constructor
» but

Yahtzee y = new Yahtzee();
is legal

» if you do not define any constructors, Java will generate a
default no-argument constructor for you

» e.g., we get the publ 1c constructor
public Yahtzee() { }

even though we did not implement it



Preventing Instantiation

» our Yahtzee API exposes only static constants
(and methods later on)
) 1ts state is constant

» there is no benefit in instantiating a Yahtzee object

» aclient can access the constants (and methods) without
creating a Yahtzee object

boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

» can prevent instantiation by declaring a private
constructor



Version 2 (prevent instantiation)

public class Yahtzee {
// fields
public static final int NUMBER_OF DICE = 5;

// constructors

// suppress default ctor for non-instantiation
private Yahtzee() {

}

[notes 1.2.3]
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Version 2.1 (even better)

public class Yahtzee {
// fields
public static final int NUMBER_OF DICE = 5;

// constructors

// suppress default ctor for non-instantiation
private Yahtzee() {
throw new AssertionError();

}
}

[notes 1.2.3]

9



private

» private fields, constructors, and methods cannot
be accessed by clients
» they are not part of the class API

» private fields, constructors, and methods are
accessible only inside the scope of the class

» a class with only private constructors indicates to
clients that they cannot use new to create instances of

the class
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Utilities
» in Java, a utility class is a class having only static fields
and static methods

» uses:
» group related methods on primitive values or arrays
» Java.lang.Mathor java.util_Arrays

» group static methods for objects that implement an
interface

» Java.util_Collections
» [notes1.6.1-1.6.3]
» group static methods on a final class

» more on this when we talk about inheritance

11



public class Yahtzee {
// fields
public static final int NUMBER_OF DICE = 5;

// constructors

// suppress default ctor for non-instantiation
private Yahtzee() {
throw new AssertionError();

}

public static boolean 1sThreeOfAKind(List<Die> dice) {
Collections.sort(dice);
boolean result =
dice.get(0).getValue() == dice.get(2).getvValue(Q ||
dice.get(l).getValue() == dice.get(3).getvValue(Q ||
dice.get(2).getvValue() == dice.get(4).getvValue(Q;
return result;
+
+
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Method Sighatures

public static boolean i1sThreeOfAKInd(List<Die> dice)

» a method is a member that performs an action

» a method has a signature (name + number and types of the
parameters)

name number and types of parameters

A
[ 1

1
i1IsThreeOFfAKInd(List<Die>)
)

'
signature

\

» all method signatures in a class must be unique
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Method Sighatures

» what happens if we try to introduce a second method

public static boolean

1sThreeOfAKInd(Col lection<Integer> dice) ?

» what about

public static boolean

i1sThreeOfAKInd(List<Integer> dice) ?
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Methods

public static boolean 1sThreeOfAKInd(List<Die> dice)

» a method returns a typed value or void

boolean

» use return toindicate the value to be returned

public static boolean i1sThreeOfAKInd(List<Die> dice) {
Collections.sort(dice);
boolean result =
dice.get(0).getValue() == dice.get(2).getvValue(Q 1]
dice.get(l).getValue() == dice.get(3).getvValue(Q 1]
dice.get(2).getValue() == dice.get(4).getvValue();
return result;

}
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Parameters

» sometimes called formal parameters

» for a method, the parameter names must be unique

» but a parameter can have the same name as an attribute
(see [notes 1.3.3])

» the scope of a parameter is the body of the method
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static Methods

» a method that is static is a per-class member

» client does not need an object to invoke the method
» client uses the class name to access the method

boolean hasTriple = Yahtzee.isThreeOfAKind(dice);

» static methods are also called class methods
» a static method can only use static fields of the class

[notes 1.2.4], [A] 249-255]
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Invoking Methods

» a client invokes a method by passing arguments to the
method

» the types of the arguments must be compatible with the
types of parameters in the method signature

» the values of the arguments must satisty the preconditions
of the method contract [JBA 2.3.3]

List<Die> dice = new ArrayList<Die>();
for (int i = 0; i <5; i++) {
dice.add(new Die());
1 argument

boolean hasTriple = Yahtzee.isThreeOfAKInd(dice);
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Pass-by-value

» Java uses pass-by-value to:
» transfer the value of the arguments to the method
» transfer the return value back to the client

» consider the following utility class and its client...
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import type.lib.Fraction;
public class Doubler {

private Doubler() {
+

// tries to double Xx
public static void twice(int x) {
X =2 * X;

}

// tries to double T

public static void twice(Fraction ) {
long numerator = f.getNumerator();
f.setNumerator( 2 * numerator );

}
}
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import type.lib.Fraction;
public class TestDoubler {
public static void main(String[] args) {
int a = 1;

Doubler.twice(a);

Fraction b = new Fraction(l, 2);
Doubler.twice(b);

System.out.printin(a);
System.out.printin(b);
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Pass-by-value

» what is the output of the client program?
» try it and see

» an invoked method runs in its own area of memory
that contains storage for its parameters

» each parameter is initialized with the value of its
corresponding argument
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Pass-by-value with Reference Types

Fraction b =

23

new Fraction(l, 2);

64
b
500
numer
denom

client

500

Fraction object

value of b is not the
Fraction 1/2

valueof bisa
reference to the
new
Fraction object



Pass-by-value with Reference Types

the value of b
is passed to the

64 client method
Fraction b = Doubler.twice

b 500
new Fraction(l, 2);
Doubler.twice(b);

500 | Fraction object

numer 1

denom 2

parameter F 600 | Doubler.twice

is an independent f 500
copy of the value
of argument b
(a reference)
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Pass-by-value with Reference Types

64 client
500

Fraction b = b
new Fraction(l, 2);
Doubler.twice(b);

500 | Fraction object

Doubler.twice
numer £ 2 multiplies the
numerator of the
Fraction object by
2

denom 2

600 | Doubler.twice
f 500
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Pass-by-value with Primitive Types

int a = 1;

26

64

client

1

value of a is the
integer value that
we stored



Pass-by-value with Primitive Types

int a = 1;

Doubler.twice(a);

27

parameter X
is an independent
copy of the value
of argument a
(a primitive)

64

800

client

1

this is a different
Doubler.twice
method than the
previous example

(now resides at
address 800)

Doubler.twice

1

the value of a
is passed to the
method
Doubler.twice



Pass-by-value with Reference Types

int a = 1;
Doubler.twice(a);
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64

800

client

1

Doubler.twice

¥ 2

Doubler.twice
multiplies the value
of X by 2;
that's it, nothing
else happens



Pass-by-value

» Java uses pass-by-value for all types (primitive and
reference)

» an argument of primitive type cannot be changed by a
method

» an argument of reference type can have its state changed by
a method

» pass-by-value is used to return a value from a method
back to the client
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Documenting Code



Javadoc

» documenting code was not a new idea when Java was
invented

» however, Java was the first major language to embed
documentation in the code and extract the documentation
into readable electronic APIs

» the tool that generates APl documents from comments
embedded in the code is called Javadoc
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Javadoc

» Javadoc processes doc comments that immediately
precede a class, attribute, constructor or method
declaration

» doc comments delimited by /** and */

» doc comment written in HTML and made up of two parts
1. adescription

0 first sentence of description gets copied to the summary section
O only one description block; can use <p> to create separate
paragraphs
>.  block tags
0  begin with @ (@param, @return, @exception)
O @pre. is non-standard (custom tag used in CSE1030)
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Javadoc Guidelines

» http://www.oracle.com/technetwork/java/javase/documentation/inde
x-137868.html

» [notes1.5.1,1.5.2]

» precede every exported class, interface, constructor,
method, and attribute with a doc comment

» for methods the doc comment should describe the
contract between the method and the client
» preconditions ([notes 1.4], [JBA 2.3.3])
» postconditions ([notes 1.4], [JBA 2.3.3])
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http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html
http://www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Javadoc Examples

» short in-class demo here
» see any lab exercise
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Introduction to Testing



Testing

» testing code is a vital part of the development process

» the goal of testing is to find defects in your code

» Program testing can be a very effective way to show the
presence of bugs, but it is hopelessly inadequate for
showing their absence.

—Edsger W. Dijkstra

» how can we test our utility class?

» write a program that uses it and verify the result


http://en.wikipedia.org/wiki/Edsger_W._Dijkstra

public class IsThreeOfAKIndTest {
public static void main(String[] args) {
// make a list of 5 dice that are 3 of a kind
// check 1T Yahtzee.i1sThreeOfAKind returns true

}
}
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public class IsThreeOfAKiIndTest {

public static void main(String[] args) {
// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 2)); // 2
dice.add(new Die(6, 3)); // 3

// check i1f Yahtzee.isThreeOfAKind returns true



public class IsThreeOfAKIndTest {

public static void main(String[] args) {

// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();

}

}
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dice.
dice.
dice.
dice.
dice.

add(new
add(new
add(new
add(new
add(new

Die(6,
Die(6,
Die(6,
Die(6,
Die(6,

1));
1));
1));
2));
3));

/7 1
/7 1
/7 1
// 2
// 3

// check 1T Yahtzee.i1sThreeOfAKind returns true
IT (Yahtzee.i1sThreeOfAKind(dice) == true) {
System.out.printIn('success);

}



public class IsThreeOfAKiIndTest {

public static void main(String[] args) {
// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();
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dice.
dice.
dice.
dice.
dice.

add(new
add(new
add(new
add(new
add(new

Die(6,
Die(6,
Die(6,
Die(6,
Die(6,

1));
1));
1));
2));
3));

// 1
/7 1
/7 1
// 2
// 3

// check 1f Yahtzee.i1sThreeOfAKiInd returns false
iIT (Yahtzee.i1sThreeOfAKind(dice) == false) {
throw new RuntimeException("'FAILED: " +

dice + "

iIs a 3-of-a-kind");



Testing

» checking if a test fails and throwing an exception
makes it easy to find tests that fail

» because uncaught exceptions terminate the running
program

» unfortunately, stopping the test program might mean that
other tests remain unrunnable

» at least until you fix the broken test case
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Unit Testing

» A unit test examines the behavior of a distinct unit of
work. Within a Java application, the "distinct unit of
work" is often (but not always) a single method. ... A
unit of work is a task that isn't directly dependent on
the completion of any other task."

» from the book JUnit in Action
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JUnit

» JUnit is a testing framework for Java

» A framework is a semi-complete application. A
framework provides a reusable, common structure to
share among applications. Developers incorporate the
framework into their own application and extend it to
meet their specific needs"

» from the book JUnit in Action
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JUnit

» JUnit provides a way for creating:
» test cases
» a class that contains one or more tests

» test suites
» a group of tests

» test runner

» a way to automatically run test suites

» in-class demo of JUnit in eclipse

44



package csel@30.games;

import static org.junit.Assert.*;

import java.util.ArraylList;
import java.util.List;

import org.junit.Test;

public class YahtzeeTest {

@Test

public void threeOfAKind() {
// make a list of 5 dice that are 3 of a kind
List<Die> dice = new ArrayList<Die>();
dice.add(new Die(6, 1)); // 1
dice.add(new Die(6, 1)); //
dice.add(new Die(6, 1)); //
dice.add(new Die(6, 2)); //
dice.add(new Die(6, 3)); //

W N R R

assertTrue(Yahtzee.isThreeOfAKind(dice));
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