CSE1030Z Exam
Saturday, April 20, 2013
2:00 PM-5:00 PM

This is a closed book test. No aids are permitted except for a non-electronic
dictionary. Answer the questions in the spaces provided on the question sheets.
You may use the back of the pages if you need more space for your answers.

Name and student number:

1. /20
2. /20
3. /12
4. /13
5. /25

6. /10

1. (20 total points)

(a)

(b)

(©)

(d)

(e)

(2 points) What are all of the meanings of the keyword final in Java?

Solution:

1. a variable can only be assigned to once
2. a class cannot be extended

3. a method cannot be overridden

(2 points) What is the most important thing to remember when working with static meth-
ods in an inheritance hierarchy?

Solution:
There is no dynamic dispatch on static methods.

(2 points) What is the main difference between a singleton and a multiton?

Solution:
A singleton is one instance that represents a single sate.
A multiton has one instance for each unique state.

(2 points) What is the main difference between aggregation and composition?

Solution:
Composition implies ownership (or common lifetime), whereas aggregation does not.

(2 points) What is meant by the term event-driven programming?!

Solution:
The flow of program control is determined by events (and listeners of events).

Page 2

(f) (2 points) What two conditions are required to ensure that a recursive method terminates?

Solution:
1. a base case is reached
2. the size of problem in each recursive invocation gets smaller

(g) (2 points) The UML class diagram for the java.util.Stack implementation of a
stack is shown below; Vector implements the List interface so it has list methods
such as get, add, and remove.

Vector

i

Stack

Explain why you agree or disagree with this implementation of a stack.

Solution:
I disagree with this implementation because a stack should not support all of the
operations in List.

(h) (2 points) As an implementer, you can choose to implement a method so that it has pre-
conditions on the parameters or you can validate the parameters. Explain how your choice
(use preconditions or perform validation) affects the clients of your method.

Solution:
The client has no guarantees if you use preconditions.
The client has guarantees specified in the postcondition if you use validation.

Page 3

(1) (2 points) What are the names of the two main operations supported by a queue data
structure?

Solution:
1. enqueue
2. dequeue

() (2 points) What is a major difference between an interface and an abstract class?

Solution:
1. An interface has no attributes.
2. An interface cannot provide default implementations of its methods.

Page 4

2. (20 total points) Consider the linked list data structure that we studied in CSE1030. Suppose
that you have a linked list of int values.

(a) (2 points) Fill in the attributes section of the UML class diagram for the nodes of the
linked list.

Node

+ data : int
+ Node : next

(b) (5 points) Complete the recursive algorithm removeLast that removes the last element
from the linked list. You do not need to use Java; plain English will suffice, but you should
refer to the attribute names you used in part (a) of this question. You can assume that the
list has at least 2 elements (i.e., do not worry about the head of the list).

removelLast (Node n) :

if (n.next.next == null) {
n.next = null;
}

removelast (n.next)

Page 5

(c) (4 points) Prove that your algorithm in part (b) is correct.

(d)

Solution:

1. (prove base case is correct) If the node after n has no successor (n.next.next ==
null is true) then we know that n.next is the last node in the list; to remove it we can
set n.next to null, which is exactly what the base case does.

2. (prove the recursive invocation is correct) Assume that removelLast(n) removes
the last node in the list with head n. If n.next is not the last node in the list then we
can treat it as the head node of a list and remove its last node. To do this, we should
invoke removeLast(n.next), which is exactly what the recursive does.

(4 points) Prove that your algorithm in part (b) terminates.

Solution:
1. (define the size of the problem) The size of the problem is m the number of ele-
ments in the list.

2. (show that each recursive invocation solves a smaller problem) The recursive invo-
cation removes the last node from a list that does not include the current node n; this
is a problem of size m — 1 < m.

Page 6

(e) (1 point) State the recurrence relation that describes the running time of your algorithm
in part (b). You can assume that checking the base case can be done in one unit of time
(or constant time).

Tn)=Tn—-1)+1

(f) (4 points) Show how to solve the recurrence relation from part (d) to find the big-O run-
ning time of your algorithm. You may assume that 7'(1) = 1.

If you do not feel confident in your solution to part (c), then show how to solve the fol-
lowing recurrence relation instead:

Tn) = T(n—2)+2
= (T(n—2-2)+2)+2

= T(n—4)+4
= T(n—2-4)+2)+4
= T(n—6)+6
= (T(n—6-2)+2)+6
= T(n—8)+8
= Tn—Fk)+k

Page 7

3. (12 total points)

(a) (7 points) Suppose that you have a St ack class that has only the following features:

the elements are of type int
a default constructor that creates an empty stack
a method isEmpty that returns true if the stack is empty

two methods push and pop that correspond to the two fundamental stack operations

Describe how you would write a (static) method that makes a copy of a stack. A postcon-
dition of your method must be that the state of the stack t when the method finishes is
the same as when the method started. Try to avoid using additional data structures (such
as lists and arrays) if possible. Functional Java code is not required; for example, the first
step of your method might be

1. make an empty stack named result.

public static Stack copy(Stack t)

1.
2.
3.

make an empty stack named result
make an empty stack named tmp
while t is not empty

(a) popt

(b) push the popped value onto tmp

. while tmp is not empty

(a) pop tmp
(b) push the popped value onto result
(c) push the popped value onto t

. return result

Page 8

(b) (5 points) Suppose that you have a Queue class that has only the following features:

the elements are of type int

a default constructor that creates an empty queue

a method size that returns the number of elements in the queue

two methods corresponding to the two fundamental queue operations

Describe how you would write a (static) method that makes a copy of a queue. A postcon-
dition of your method must be that the state of the queue g when the method finishes is
the same as when the method started. Try to avoid using additional data structures (such
as lists and arrays) if possible. Functional Java code is not required; for example, the first
step of your method might be

1. make an empty queue named result.

public static Queue copy (Queue q)

1. make an empty queue named result
2. n=q.size()
3. for (inti=0;1 < n; i++)
(a) value =dequeue q
(b) enqueue value into result
(c) enqueue value into q
4. return result

Page 9

4. (13 total points)

(a) (3 points) What are the inorder, preorder, and postorder traversals of the following binary

tree?
A
/' I "\
G S
- [[

X B Y
| P |

N

inorder : X, G,N,B, A, S, Y
preorder : A, G, X, B,N,S,Y

postorder : X, N, B, G, Y, S, A

(b) (4 points) Draw the binary search tree having integer valued elements created by insert-
ing the elements in the following order: 50, 75, 17, 25, 50, 18, 30, 80.

Page 10

(c) (4 points) Draw the binary search tree having integer valued elements created by insert-
ing the elements in the following order: 80, 75, 50, 50, 30, 25, 17, 18.

(d) (2 points) What is the worst-case (big-O) running time when searching for an element in
a binary search tree? Under what conditions does the worst-case running time occur?

Solution:

O(n)

This occurs when the elements are inserted in (almost) sorted order (ascending or
descending).

Page 11

5. (25 total points) In geometry, we can think of a square as being a rectangle with all sides
having the same length. Suppose that you wish to implement the classes Rectangle and
Square where Square is-a Rectangle.

(a) (3 points) Suppose thatevery Rectangle hasawidthandaheight. Every Square
hasawidth and a height and a class invariant width == height is true. Suppose
that Rectangle has only one method:

/ *
* Postcondition: Sets the width of the rectangle
* leaving the height unchanged
*/

public void setWidth (int newWidth) { ... }

What problem do you have when you implement Square?

Solution:

Square cannot maintain its class invariant because the postcondition says that the
width and height can be different.

(b) (3 points) A fellow student says that you can fix the problem in Square by overriding
setWidth and changing the postcondition of the Square version to:

/ *
* Postcondition: Sets the width of the square;
* also changes the height so that
* width == height is true
*/
public void setWidth (int newWidth) { ... }

Explain why you agree or disagree with your fellow student.

Solution:
Disagree; Squares are no longer substitutable for Rectangles if you change the post-
condition in this way.

(This is a weakening of the postcondition from Rectangle.)

Page 12

(c) (3 points) Another student says that you can fix the problem in Square by overriding
setWidth and changing the postcondition of the Rectangle version to:
/ *
x Postcondition: Sets the width of the rectangle.
*/
public void setWidth (int newWidth) { ... }

Explain why you agree or disagree with your fellow student.

Solution:
Agree; this postcondition makes no promises about the height so Square could set its

height when it sets its width.

Disagree; setWidth still seems like it should only change the width of the rectan-
gle.

(The change is technically correct, but potentially confusing.)

(d) (4 points) Another student says that you can fix the problem in Square by adding a new
method to Square:

/ *
* Postcondition: Sets the length of each side of the square.
*/

public void setLength (int newLength) { ... }

Explain why you agree or disagree with your fellow student.

Solution:
Disagree; Square inherits setWidth so the original problem is still present.

Page 13

(e)

®

(3 points) Another student says that you can fix the problem in Square by overriding
setWidth so that it throws an exception:

/ *
* Postcondition: Operation not supported for squares;
* always throws an exception.
*/
public void setWidth (int newWidth) throws Exception { ... }

Explain why you agree or disagree with your fellow student.

Solution:
Disagree; the Rectangle version does not throw an unchecked exception, so the over-
ridden version cannot throw one either.

(This change will not even compile.)

(5 points) Another student says that you can fix the problem in Square by making
Rectangle immutable and modifying the postcondition of the Rectangle version
of setWidth to:

/ *
* Postcondition: Returns a new rectangle having width
* equal to newWidth and height equal to
* this rectangles height.
*/

public Rectangle setWidth (int newWidth) { ... }

Explain why you agree or disagree with your fellow student. Does Square need to
override setWidth in this solution?

Solution:
Agree; now that the width cannot be changed there is nothing preventing Square from
maintaining its class invariant.

Square does not need to override setWidth because there is nothing specific to Squares
in the method.

Page 14

(g) (4 points) Another student says that you can fix the problem in Square by inverting the
inheritance relationship so that Rectangle is-a Square. Under this model, Square
now defines the following method:

/ *
* Postcondition: Sets the width of the square.
*/

public void setWidth (int newWidth) { ... }

and Rectangle overrides it to set its width independently from its height.

Explain why you agree or disagree with your fellow student.

Solution:

Disagree; if Rectangle is substitutable for Square then it must maintain the class in-
variant of Square (width == height is true) which cannot be done if Rectangles can
change their width and height independently.

Page 15

6. (10 total points) Suppose that you have a GUI application where the user can interact only
with one button. The UML class diagram for such an application is shown below:

View |——| Controller k—— Model

[

JButton K

(a) (3 points) Explain why the controller has a reference to the view.

Solution:
The controller needs to invoke view methods (to get and set the state of the view).

(b) (3 points) Explain why the controller has a reference to the model.

Solution:
The controller needs to invoke model methods (to get and set the state of the model).

(c) (1 point) Explain why the view has a reference to the button.

Solution:
The view constructs the button (because the button is part of the user interface or the
view).

(d) (3 points) Explain why the button has a reference to the controller. Should this relation-
ship be the other way around (i.e., should the controller have a reference to the button)?

Solution:
The button needs to invoke the actionPerformed method in the controller whenever
an event is fired.

No, the relationship is correct because the button knows when it is pressed (it is the
source of the event) and it needs to inform listeners when an event occurs.

Page 16

