
CHAPTER 2

Input Devices

1. Video Input Devices

A Computer Vision system senses its environment through a video camera and a
digitizer, and like its biological counterpart, the camera converts an optical image to a for-
mat that can be processed by a computing device. But unlike the human eye, the typical
video camera is a low resolution, noise infected, mechanically fragile and of unproven
durability device. While there are cameras that do better than the human eye in one or
another aspect, overall the human eye is far superior. There are of course cameras smaller
than the eye and cameras more accurate than the eye. But the quality of the images of the
small cameras is poor and the size of the high quality cameras is monstrous. On the other
hand a video camera can be easily connected through a digitizer to a computer, not to
mention that they will not rot if forgotten in a drawer.

1.1. Components of video cameras

A camera is a quite complex device and different people would analyze it in many
different ways. A physicist would concentrate on the light refraction, diffraction etc, an
optician on the lens technology, an electrical engineer on the sensing device and the sig-
nal amplification and a photographer on the aesthetics. A Computer Scientist has three
components to study. The control system, the sensing surface geometry and some of the
properties of the lens.

1.1.1. Camera control

The control system modifies the parameters of the camera under computer (or man-
ual) command. Most camera parameters can be modified, but focal length,f-number, and
position and orientation are the most common and most important. The estimation and
the strategies for changing these parameters are the subject matter ofCamera Calibration
andActive Vision.

1.1.2. Sensing surface

The sensing device is almost invariably a CCD (Charge Coupled Device), a mono-
lithic chip that contains all the sensing elements that form the image surface. Typical size
for video quality CCD is1/2” (12.5 mm) diagonal and a resolution around640 × 48 0.
Since television standards require a3: 4aspect ratio the size of our typical sensing surface
is
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12.50mm×
4

√ 32 + 42
= 10. 00mm

and

12.50mm×
3

√ 32 + 42
= 7. 50mm

This 10. 00 × 7. 50mm2 area contains about640 × 48 0pixels, each about15. 00 ×15. 00µm2

in size. These are about the thickness of a human hair and are hardly visible with naked
eye. Still they are much bigger than the wav elength (about half aµm) of the visible light

Almost all video cameras have around 480 rows of pixels because this is what the
video standard dictates. Very few cameras though have all the 640 pixels per row. The
video standard was designed for tubes and scanning beams of electrons and consequently
is vague on this detail. Moreover, the image is sensed as analog signal before being digi-
tized. In this analog format the image is transmitted row by row (with some synchroniza-
tion signals between rows) and each row is an analog wav eform with no indication as to
where the original pixels were. The only indication about the number of pixels per row is
the amount of detail present. So the number of pixels per row depends only on the digi-
tizer that usually samples it at640 pixels per row to make digitized image compatible
with most computer screens that have square pixels (640:480 is a ratio 4:3).

The size of the CCD affects a few things. The price is quite dramatically afftexted
because we not only need more silicon for the chip but also a bigger lens and enclosure to
go with it. But a bigger chip allows for better light collection ability and thus less camera
noise (less graininess). It also allows the pixels to be larger than theAiry circle that we
discuss in the next subsection.

1.1.3. Camera lenses

There is a large variety of lenses in the market with specifications to fit many appli-
cations in research, industry, education, entertainment etc. And of course the number of
parameters that specify the quality of a lens is large. The most important of them in Com-
puter Vision are the following two:

1.1.3.1. Focal length The image of an object that is infinitely far away (or at least very
far away like the sun) will form at a distance equal to the focal length behind the lens.
The longer focal length the higher the “magnifying” power of the lens. The trade names
of the lenses according to their magnifying power arefish eye, wide angle, normal, stan-
dard andteleand the termmacrois used for lenses that can focus on objects that are very
close. For half inch video cameras16mm is the standard lens, the one with the most natu-
ral feel.

1.1.3.2. f-number The f-number is defined as the ratio of the focal length to the diame-
ter of the lens. The smaller thef-number the wider the opening of the lens and the more
light can come through. So with low f-number the image is brighter. There two more
things that change with thef-number and have to do with perfect lenses. One is the depth
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Small blur.

Larger blur

Everything on this plane
is in focus

Everything on this plane
is slightly beyond focus.

Figure 1.1: Things that are in focus will give rise to sharp images in both lens cameras above . But
light sources that are a bit further away will blurr y. The bigger the lens the larger the
blur and so the camera is more sensitive to movements along the optical axis. The
depth of field of the camera with the wide lens is more restricted.

of field. When we focus the lens at an object, say 4 meters away the objects that are a lit-
tle closer and a little further away are still acceptably focused. If things are focused half a
meter closer and half a meter further than the object then the depth of field is one meter.
The larger thef-number the larger the depth of field and so the lens is more forgiving to
inaccuracies in focusing (Fig. 1.1). But there is another effect which is due to diffraction
that conspires to create the opposite effect. When the aperture of the lens becomes too
small then the diffraction of the light tends to blur the image. The diameter of the blur,
called theAiry circle, is in the order of thef-number times the wav elength.

To understand this we have to see how the lens really works and go beyond the com-
mon idea that the lens “bends” the light rays. This is just a convenient abstraction that
works most of the time but not always. Light in this context behaves like a wav eand the
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lens just introduces such phase shifts in the different rays that they interfere with each
other in the desired way. If the aim is to focus light on a single point the rays that go to
this point will arrive there in phase and interfere constructively and rays that go to all
other points will arrive out of phase and interefere destructively. The problem is that a
tiny distance away from our intended focus the light rays, while not perfectly in phase,
will not be totally out of phase either, allowing some light to reach there and instead of
the desired single infinitesimal point we will get a blur.

We briefly examine the phenomenon by looking at a small number of rays. If they
are to interefere constructively they hav eto follow paths that are of equal length and if
they are to interefere destructively paths that differ by half a wav elength. Lookingat
(Fig. 1.2) we can see that the difference between the two paths of the off center rays
should beλ /2 and assuming that distancex is small compared to the diameter and that
thef-number is relatively large, this difference is

√ f 2 + (d/2 + x)2 − √ f 2 + (d/2 − x)2 ≈




f 2 + (d/2 + x)2


− 


f 2 + (d/2 − x)2


2√ f 2 + d/22
≈

x

√ 


f

d



2

+ 

1

2



2
≈

x

f-number.

It is easy to see that the distance2x = λ f-number and that the diameter of this blur is
approximatelyf-number times the wav elength. Although is a “back of the envelop” calcu-
lation the result is fairly accurate.The minimumf-number of most lenses is between 1.2
and 4.8 but thef-number can become about 16, which makes the worst case Airy circle
comparable in size with the pixel which is around 15µm.
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f

d

Light rays should all be in phase
to reinforce each other constructively

Light rays from two opposite sides of the
lens, should reach this spot with opposite
phase to cancel out.

These two rays travel equal distances
so they are in phase.

This ray travels a distance√ f 2 + 

d

2
+ x



2

This travels√ f 2 + 

d

2
− x



2

This distance isx

Figure 1.2: A distant point will appear a bright spot because light waves meet in phase and rein-
force each other. Right next to it light rays will meet out of phase and cancel out. The
minimum distance that this cancellation can happen is the radius of the Airy circle.

6 Ch. 2. Sec. 1. Video Input Devices



Computer Vision Spetsakis

1.1.3.3. Aberrations and distortions

Although the focal length and thef-number are the most commonly cited numbers
lens parameters, there are several others that give information about the quality of the
optics and how much they differ from the ideal orray-tracing model. In general we dis-
tinguish two kinds of such deviation of a lens from the ideal: the aberrations and the dis-
tortions. The first refers to the deviations that result in loss of focus e.g. the image
becomes blurred and the later to the loss of geometric fidelity, where the light from a sin-
gle point focuses on a single point but this point is the wrong point and as a result straight
lines are not projected to straight lines. In general the larger the diameter of the lens the
more noticeable the aberrations and the shorter the focal length the more noticeable both
the distortions and aberrations. We can easily deduce that the lower thef-number (e.g. the
brighter the lens) the greater the distortions and aberrations.

Lens designers solve the lens myopia in a way very similar to the way doctors solve
it for humans: glasses. These glasses take the form ofcompound lens. The design of these
lenses is a very difficult optimization problem that does not concern us. Most quality
lenses have rather small aberrations

The most common aberrations and distortions are:

1.1.3.3.1. Spherical Most lenses have their surfaces ground to the shape of a patch of a
sphere, because this shape is the easiest to construct with simple mechanical means. The
main consequence of this is that the rays of light that go through the central region of the
lens focus at the nominal focal distance, whereas the ones that pass through the peripheral
areas of the lens focus a bit closer. This is a relatively easily corrected aberration.

1.1.3.3.2. Coma The coma aberration makes the image of a small bright point near the
edges of the image, look like a bright dot with a comet like halo. It happens because the
light rays that go through the center of the lens focus at the ray tracing spot whereas the
ones that enter at oblique angles and pass through the periphery of the lens focus at a dif-
ferent distance from the center of the image than the ideal.

1.1.3.3.3. Astigmatism Lens astigmatism shares few things with human astigmatism
and should not be confused. The astigmatism of a lens is negligible near the center of the
image and increases towards the edges. It is due to the tendency of the rays that emanate
from a single 3-D point to focus on two tiny perpendicular linear segments one in front of
the other. If we point the lens towards a single tiny distant light source and put the image
plane close to the lens the image will be unfocused and look like a round blur. As we
move it away the image of the light source becomes clearer. At some point instead of
shrinking to a single point it will shrink to a small line. If we continue moving the image
plane it will become a round blur again and a little further away it will again focus for the
second and last time on a small line perpendicular to the first. The one of the lines will be
along the radius and the other normal to that.
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1.1.3.3.4. Color Aberration The different wav elengths of light are deflected with dif-
ferent angles when they pass through an optical system like a lens. As a result light of dif-
ferent colors focus in different places reducing the quality of the image. This aberration
can be fairly easily eliminated with proper design.

1.1.3.3.5. Radial Distortion The radial distortion does not blur the image by itself but
distorts the geometry. The result is that if we point the camera towards a rectangular grid
the image will not consist of straight lines but curved. If we have a neg ative radial distor-
tion the image will be like an inflated balloon and if have a positive it will be like a pin-
cushion. The distortion in most cases can be approximated byδ r = k1r3 wherek1 is the
lens distortion factor,r is the radius of a point on the image andδ r is the displacement of
the point along the radius. We can write it also in vector form (with bold characters
denoting vectors)δ r = k1r2r. For higher accuracy one can take more terms of the polyno-
mial e.g.δ r = r ⋅

i
Σ ki r

2i . The fish eye lens has an extremely pronounced radial distortion

and all the wide angle lenses have a quite strong such distortion. The commercial lenses
incorporate very few corrections to this distortion for two reasons. One reason is that it is
rather expensive and inconvenient because more optical elements are required, arranged
in ways that would increase weight and size. Second, it is not that disagreeable to a
human when viewed on an already curved television screen. Unfortunately it affects any
computer vision application that requires a geometrically accurate image. And while all
aberrations can be reduced by decreasing the diameter of the lens, radial distortion can
not. Typical values for the radial distortion vary from less than one pixel for high quality
tele lenses to several pixels for wide angle lenses.

1.1.3.4. Calculations with the lenses

From the definition of the focal length we know that the image plane should be one
focal length away from the lens to properly form the image of an object at infinity. If the
object is at distanceα in front of the lens and the image plane is at distanceβ behind,
then

(1.1)
1

α
+

1

β
=

1

f

where f is the focal length.

If the lens is slightly defocused byδ α then according to figure (Fig. 1.1) and the
rule of similar triangles the blurb will be

b = δ α ⋅
d

α + δ α
≈ δ α ⋅

d

α

and using Eq. (1.1)

b = δ α ⋅
d(β − f )

f β
= δ α ⋅

β − f

β f-number
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These two lines
meet here

These two lines
meet here

These two lines

These two lines

meet here

meet here

Figure 1.3: Light rays from a point source going through a lens with astigmatism will not focus on
a single point but on two little lines one in the tangential and one in the radial direction
that are different distances away from the lens.

and sinceβ >> f

b =
δ α

f-number

Depending on the resolution of our camera (the combined effect of the number of pixels
on the sensing surface and the aberrations of the lenses) there is a maximumbmax beyond
which the effects of lack of focus will be visible. Given this bmax the depth of focusδ β is

|δ β| =
β 2

α 2
δ α =

β 2

α 2
bmax f-number

where we used the derivative of (Eq. (1.1)) to obtainδ β .
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1.2. Modeling the Video Camera Geometry

A real camera is an approximation of the pinhole camera which cannot be used due
the low light gathering ability and the diffraction effects of the small aperture. Ideally we
would prefer to do our calculations with a pinhole camera with an effective focal length
of one unit. Since it is impossible to use it without a lens the next best thing is to model
the camera and and hide all the details behind a few subroutines,C++ objects, or Media-
Math objects.By replacing the camera with an abstract model we can throw in a few
other nice features that real cameras lack, like non inverted image and coordinates that
are easier to use.

The image is naturally a two dimensional quantity, but we will use three dimen-
sional homogeneous coordinates for the greater versatility they offer. Let’s define the
coordinate systems we will use and then see how we transform one to the other.

The Image Coordinate Systemis the system we use for images irrespective of the
3-D nature of the imaged objects. This system is used exclusively in image processing
and in any vision application that does not involve the 3-D world. The origin or point
[0, 0] of the system is the top left corner of the image andx andy increase to the right and
down respectively and are usually integers (Fig. 1.4). The third coordinate, which is there
merely for the convenience of the homogeneous coordinates, happens to be parallel to the
axis of the camera with direction away from the viewer.

The second coordinate system we need is theCamera Coordinate System. This sys-
tem can represent both the image points and 3-D points and it is attached to the camera.
Its origin is the nodal point (the center) of the lens, itsX andY axes are parellel to the
focal plane and theZ axis points towards the scene. The third (Z) coordinate of an image

x

y

Figure 1.4: The image coordinate system.
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point point can be considered either as the homogeneous coordinates supplement or the
genuineZ component of a point on the focal plane. If we assume that the focal plane is
one unit away from the origin then the two roles are indistinguishable.

The coordinate system is right handed with the focal plane normal toZ. Notice that
the right handiness requires us to have theY axis pointing down, which agrees with the
conventions of the image coordinate system. The image is formed by a ray emanating
from a point on the 3-D object towards the nodal point (Fig. 1.5). In a real camera we
would have to extend this ray beyond the nodal point and get an inverted image behind
the camera. Instead we choose to model the focal plane as being in front of the lens, so
the image of the point is the intersection between the ray and the focal plane. This is quite
different from both regular cameras with a lens or a reflective camera since the image is
not inverted but the camera manufacturers are part of the conspiracy and cross wire the
electronics. The image that comes out of the camera is more consistent with our unrealis-
tic model than the actual physical model.

In most cases when we work with vectors the coordinate system is easily implied
but when it is not we will use a left superscriptI or c to specify image or camera coordi-
nate system. Assume that we have a point I p defined in the image coordinate system

I p =





j

i

1






and we want to find its relation withc p in the camera coordinate system

c p =




x

y

1





In the absence of distortion, the relation involves only a rescaling and a shift. Since trans-
formations involving rescalings and shifts are very common, scientists have giv en them a
name. They call themaffine transformations. We can find the rescaling factor by compar-
ing the size of the pixel in the two coordinate systems. In the image coordinate system it

is 1×1 and in the camera coordinate system it is
l v

r v
×

l h

r h
, wherel h andl v are the horizon-

tal and vertical dimensions of the sensing surface andr h andr v are the corresponding res-
olutions (usually 640 and 480). We can assume that the focal lengthf is f = 1 and if it is
not we can divide all length quantities byf . We also know that the shift is half the sens-
ing surface size in each direction because the[0, 0] point in the image system is in the
upper left corner and in the camera system is in the center. So the matrix that relates them
is:
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C =








r h

l h

0

0

0
r v

l v

0

r h

2
r v

2
1








and its inverse

C−1 =









l h

r h

0

0

0

l v

r v

0

−
l h

2

−
l v

2

1









Matrix C is calledCalibration Matrix and here is why. While the camera and lens
manufacturers are supposed to provide us with all the numbers like l h and r h to a high
degree of precision, they do not always do. This is especially true for the focal length.

Nodal point

Pi

pi
Z

−Y

X

3_D point

Image plane

2-D image point

Figure 1.5: The camera coordinate system. By convention we use lower case letters for the image
points and upper case letters for the 3-D points.
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They also do not guarantee that the lens is directly in front of the center of the CCD. As a
result we have to apply a procedure calledCamera Calibration to calculate the parame-
ters ofC. Hence the name.

Also note that we used the convention for the camera coordinate system thatX
points to the right andY points down. This is similar to the image coordinate system. We
might as well have the X point to the left andY point up. In this case the[1 ,1] and [2, 2]
elements of the calibration matrix would have the opposite sign.

1.2.1. Perspective Projection

Since the projection involves both the 3-D world points and their images we use the
camera coordinate system. By convention we use capital letters to represent 3-D points
and lower case to represent their images. If a 3-D point is

P =





X

Y

Z






and its projection is

p =




x

y

1





then by simple application of the law of similar triangles we have

x =
X

Z

y =
Y

Z

always assuming that the focal length is 1. If we want to write the above equation in vec-
tor notation then

p =
P

P ⋅ Ẑ

whereẐ is the unit vector inZ direction and⋅ is the dot product.

1.2.2. MediaMath Example

When we have these parameters it is easy to construct the inverse calibration matrix
and use it as a global variable.
Cal_Mati = mk_fmat(3,3,[[l_h/r_h,0,-l_h/2.0]

[0,l_v/r_v,-l_v/2.0]
[0,0,f_length]]);

Cal_Mati /= f_length;

Then every vector in image space can be converted to camera space easily.
i_p = mk_fvec(3,[j,i,1]);
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c_p = Cal_Mati*i_p;

Consider for instance the the problem where we are already given the zed mapZ_map,
e.g. an image that at every pixel contains the depth or theZ component of the object at
the corresponding point in 3-D, and we are asked to rotate all the points in the scene by
the Euler anglesα , β andγ and move them bya, b andc.
/* Construct the rotation and translation vector */
R = R_z(alpha) * R_y(beta) * R_z(gamma);
T = mk_fvec(3,[a, b, c]);
/* Construct the object vector as a generalized vector */
i_p = mk_gvec(3,[x_img(Z_map->vmax,Z_map->hmax),

y_img(Z_map->vmax,Z_map->hmax),
1]);

c_p = Cal_Mati*i_p;
c_p *= Z_map;
/* Rotate and translate */
new_c_p = R*c_p + T;

where instead of manipulating each point inside a double for-loop we consider them as a
vector of images.
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