
Computer Vision Spetsakis

1. Motion Representation

To solve any problem involving motion in 3-D we have to hav ea way to represent
3-D motion. Motion representation is a well understood problem but a non trivial one.
There are many possible representations and each one has advantages and disadvantages.
The troublemaker is rotation. Poor translation has only a couple. But rotation! Rotation
has the Rodrigues parameters, the Euler angles (24 different flavors of them, 12 of which
are really called fixed), quaternions, angle and axis, raw rotation matrices. Before we get
scared, it is not that mathematicians are so much smarter. They just take care of their
image very well. The relation between quaternions and Rodrigues parameters is trivial,
the Rodrigues could be named axis and tangent of half angle, the Euler angles is what a
roboticist would come up with. There are twenty four of them to accommodate all possi-
ble definitions of coordinate systems attached to robotic body parts. And no representa-
tion of rotation is any good if not associated with a rotation matrix. As for disadvantages
each one has its own. The Rodrigues parameters cannot represent rotations of 180
degrees. All Euler angles have two representations (two sets of angles represent the same
rotation) plus they hav esingularities (infinite number of solutions at a few certain points).
Quaternions can represent anything without singularities but involve 4 numbers instead of
three. And a raw rotation matrix is the best in any other respect but it involves 9 numbers.
And only the Rodrigues parameters and the raw matrix can be extended to more than
three dimensions (which is good to know in case you need to give driving directions to
4-dimensional aliens).

To make things slightly more complex the representations of rotation and translation
can be used either directly or embedded in a homogeneous transformation which is just a
4 × 4 matrix. The homogeneous route is used in graphics libraries due to their simplicity:
instead of having to carry a rotation matrix and a translation vector, they carry a 4× 4
matrix only. It is often preferred in robotics and computer vision mostly for the same rea-
sons. The issue of convenience, carried several steps further gav erise to projective geom-
etry. Another mathematical trick to impress the common folk.

Finally, we seem to take for granted that any motion can be represented by a rotation
and a translation. While the assertion is certainly correct and plainly obvious, one has to
prove it. Unfortunately proving that any rigid motion can be represented by a rotation and
a translation is quite hard. Fortunately it offers no intuition and no insight and can be
safely omitted. The opposite, proving that any rotation and translation constitute a rigid
motion is much simpler and offers some useful insight.

1.1. Translation Vector Poor translation vector. It has only one representation really.
Let the translation vector beT

T =





tx

ty

tz






and a pointP

Ch. 9. 131

Spetsakis Computer Vision

P =





px

py

pz






is translated toP′, just by adding vectorT to it

P′ = P + T.

It is not hard to prove that translation is a rigid motion. We only have to prove that the
distance between any pair of of pointsP1 andP2 does not change with motion. So let us
prove that

||P1 − P2|| = ||P′1 − P′2||

where the primed symbols are the points after the motion. Starting from the right hand
side

||P′1 − P′2|| = ||P1 + T − (P2 + T)|| = ||P1 − P2||.

That’s a nice one line proof.

1.2. Rotation Matrix Now the hard part. To make a hard problem slightly easier lets
sojourn to the world of a chicken that did not cross the road all the way. In this 2-D world
we can rotate only around a point (pivot) by some angleθ and unless specified otherwise,
the pivot is the origin of the coordinate system. So a 2-D pointP

Q =




qx

qy





rotates to point

Q′ =




q′x
q′y





and the coordinates of these points are related as follows:

q′x = qxc − qys

q′y = qxs + qyc

wherec = cos(θ) and s = sin(θ). And if we want to pretend that we are adults and write
it in matrix form





q′x
q′y





= 


c

s

−s

c






qx

qy





Q′ = RQ

where

132 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

(1.1)R = 


c

s

−s

c



is the rotation matrix.We might be tempted to derive some properties from this simple
matrix and generalize to three (or more) dimensions. Unfortunately many properties are
specific to the world of flat chicken, so we have to be careful. One property that holds for
all rotation matrices is the value of the determinant

|R| = c2 + s2 = 1.

1.2.1. Rotation and Rotation Matrices

As opposed to translation where we added two vectors, in rotation we multiply the
point vector with the rotation matrix. To explore our new found mathematical structure
further we try to establish that the rotation is a rigid transformation. We return from the
world of flat chicken back to 3-D and try to find if the distance between any pair of points
P1 andP2 does not change with rotation

(1.2)||P1 − P2|| = ||P′1 − P′2||

where the primed symbols are the points after the motion

(1.3)P′i = RPi

Starting from the right hand side of Eq. (1.2) we write

(1.4)
||P′1 − P′2|| = ||RP1 − RP2|| =

(RP1 − RP2)T (RP1 − RP2) = (P1 − P2)T RT R(P1 − P2)

If RT R is anything other than the identity matrix1 then we cannot prove Eq. (1.2) forall
vectorsPi . So the only way that (1.3) can represent rigid motion is if

(1.5)RT R = 1

which is a definitive property of rotation matrices. In fact the definition of a rotation
matrix is that it satisfies Eq. (1.5) and has unit determinant. Armed with Eq. (1.5) we can
continue Eq. (1.4)

(P1 − P2)T (P1 − P2) = ||P1 − P2||2

1.2.2. Representation The rotation matrix represents a rotation in the most general
form, can be extended to arbitrary (but finite) dimensions, has no singularities of any kind
and is unique (if two rotation matrices represent the same rotation then the two matrices
are equal). But it involves too many numbers and these numbers have no immediate phys-
ical meaning. The redundancy will give us trouble if we try to estimate them and the lack
of direct physical interpretation will limit the connection to the underlying physical prob-
lem.

Ch. 9. Sec. 1. Motion Representation 133

Spetsakis Computer Vision

1.2.2.1. Fixed Angles

We hav ealready seen the 2-D rotation in Eq. (1.1) and does not look too bad. It
involves one parameter only, the angle of rotation, and the pivot of the rotation is by con-
vention the origin. The matrix is only 2× 2 and of very simple form. How about extend-
ing it to three dimensions. We all know that orientation in 3-D involves three motions:
pan (left and right), tilt (up and down) and roll (what is left), or if you are a sailor roll,
pitch and yaw. These correspond to rotations around theX, Y and Z axes. So forget all
you learned in your math courses, head for the port and ask an old salt. Any sailor that
has survived a force nine storm will tell you that the rotation around theX axis is

(1.6)Rx(θ1) =





1

0

0

0

c1

s1

0

−s1

c1






the rotation around theY axis is

(1.7)Ry(θ2) =





c2

0

−s2

0

1

0

s2

0

c2






and therotation around theZ axis is

(1.8)Rz(θ3) =





c3

s3

0

−s3

c3

0

0

0

1






.

Now all we have to do is multiply them together and get

R = Rx(θ1)Ry(θ2)Rz(θ3)

which we can expand and get

R =





c2 c3

s1 s2 c3 + c1 s3

− c1 s2 c3 + s1 s3

− c2 s3

− s1 s2 s3 + c1 c3

c1 s2 s3 + s1 c3

s2

− s1 c2

c1 c2






.

This matrixR certainly does not look friendly. While any Computer Scientist or Engineer
can computeR numerically given the three angles (which keeping with our holy tradi-
tions we call forward kinematics), it does not seem easy to go the inverse way and com-
pute the angles given R. But then we do like attempting the impossible when we know it
is possible.

After staring at the beast for a few minutes we notice thatr13, the upper right ele-
ment is equal tos2, the sine ofθ2. So we can get two solutions forθ2 and we can assume
that c2 is known (it has two possible values so we repeat the procedure twice). Armed
with this we notice that

134 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

c3 =
r11

c2

s3 = −
r12

c2

and so we can find a solution forθ3

θ3 = atan2(−
r12

c2
,
r11

c2
).

We can repeat the procedure forθ1

s1 = −
r23

c2

c1 =
r33

c2

and so

θ1 = atan2(−
r23

c2
,
r33

c2
).

We are almost done. What ifs2 = 1 which makesc2 = 0. It will be impossible to divide
by c2 then. The secret in Computer Vision and Robotics (as well as intergalactic travel) is
DO NOT PANIC. The lower left 2× 2 submatrix ofR has not been used so far. It is not
too late. Ifs2 = 1 then this matrix becomes





s1c3 + c1s3

s1s3 − c1c3

c1c3 − s1s3

s1c3 + c1s3





which can also be written as





s13

−c13

c13

s13





where s13 = sin(θ1 + θ3) and c13 = cos(θ1 + θ3). While it does not look intimidating it
does not have unique solution. We can compute

θ1 + θ3 = atan2(r21, r2,2)

but we hav einfinite solutions for each individual angle. In other words a singularity. It
seems that we killed this singularity rather too easily. In practice it is very hard to decide
when a number is zero or one. Since the computers have finite accuracy, a zero might be
represented by a very small number and an one by a number very close to but not exactly
one. To compound our misery, the round-off error might be slightly different on different
computers or with different compilers. The only solution is trial and error.

But before we go to the next chapter, we need to find out why is this representation
calledFixed Angles. It does not seem likely that they were introduced by a guy named
Joe Fixed, or these angles can be viewed as neutered. To see why, let us go back to the
definition ofR

Ch. 9. Sec. 1. Motion Representation 135

Spetsakis Computer Vision

R = Rx(θ1)Ry(θ2)Rz(θ3)

and observe that rotation matrices mean nothing unless we use them to rotate something.
So let 3P be a point in the third coordinate system (we need more than one since we
have three rotations), which initially is coincident with the world frame. Frames 1 and 2
are also coincident with the world frame. We first rotate frame 3 around theZ axis of
frame 2 (same as frame 1 and world frame) and get

2P = Rz(θ3) 3P.

We then rotate frame 2 (with frame 1 rigidly attached to it) around theY axis of frame 1
(same as world frame) and get

1P = Ry(θ2) 2P = Ry(θ2)Rz(θ3) 3P.

And finally we rotate frame 1 around theX axis of the world frame and get
wP = Rx(θ1) 1P = Rx(θ1)Ry(θ2)Rz(θ3) 3P.

It is now clear that the representation is called fixed angles because each time we rotate
around an axis that isfixed to the world coordinate system. If we were modeling the
motion of a robot wrist we would rotate the last joint of the wrist first byθ3 then the sec-
ond last joint byθ2 and finally the first joint of the wrist by an angleθ1. Most books call
this representationFixed AnglesZ − Y − X and the angles are written as (θ3,θ2,θ1).
There are twelve variants of these likeZ − Y − Z, X − Y − Z, X − Y − X, etc.

1.2.2.2. Euler Angles It is easy to rotate around a cardinal axis using the notation in
Eqs. (1.6), (1.7) and (1.8). But if we reverse the order of the operations in the wrist exam-
ple above and rotate the first joint of the wrist first, when we rotate the second joint we
are no longer rotating around the originalY axis but a rotated version of it. And this
sounds like an awfully complex thing to do. But it is not. After you have rotated the three
joints of a wrist it does not matter which one you rotated first. Any backhoe operator can
verify this for you but a mathematician can prove it. So the representation above is also
Euler AnglesX − Y − Z and the angles are written as (θ1,θ2,θ3). There are another 12
variants of these too.

The Euler angles are by far more popular! The reasons are that we can sound more
scientific (very fashionable for almost two centuries now) without doing much, confuse
the uninitiated, and avoid invoking feelings of guilt to typical dog and cat owners.

1.2.2.3. Cayley’s Formula and Rodrigues Parameters

Cayley’s Formula, Rodrigues parameters along with quaternions and Lie algebras
are based on the same idea which with successive rumination has given us many “differ-
ent” concepts. Since they belong to theseen-one-seen-them-allclass of ideas we treat
them together. So we start with Cayley and his ground shaking formulas (there are two).
Let S be

136 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

(1.9)S = (R − 1)(R + 1)−1

whereR is as always a rotation matrix. One can prove that

ST = −S.

S is in other words a skew symmetric matrix. It is fairly easy to do so. First notice that

S = (R − 1)(R + 1)−1 = R(R + 1)−1 − (R + 1)−1

and so

ST = (RT + 1)−1RT − (RT + 1)−1 =

(RT + 1)−1R−1 − (1RT + RRT)−1 =



R(RT + 1)



−1

− 

(1 + R)R−1



−1

=

(1 + R)−1 − R(R + 1)−1 = −S

and if you are not feeling the ground shaking wait for the second installment of Cayley’s
formula:

(1.10)R = (1 − S)−1(1 + S)

in other words fromS we can get backR. We can easily prove that R is a rotational
matrix if S is a skew symmetric matrix. First we show that it is orthonormal:

RRT = (1 − S)−1(1 + S)(1 + S)T (1 − S)−T =

(1 − S)−1(1 + S)(1 − S)(1 + S)−1 =

(1 − S)−1(1 + S− S− S2)(1 + S)−1 =

(1 − S)−1(1 − S)(1 + S)(1 + S)−1 = 1.

Then we show it is not just orthonormal but a true rotation matrix, it has that is a positive
unity determinant. There are many ways to prove it, bu the one that requires the least
typesetting is the following: Two matrices that have the same eigenvalues have the same
deperminant since the determinant is just the product of the eigenvalues. We will show
that matrices1 − S and1 + S have the same eigenvalues and so the same determinant. Let
λ be an eigenvalue of1 − S. Then

0 = |1 − S− λ1| =



(1 − S− λ1)T


=



1 − ST − λ1


=

|1 + S− λ1|

Ch. 9. Sec. 1. Motion Representation 137

Spetsakis Computer Vision

Soλ is also an eigenvalue of1 + S, thus|1 + S| = |1 − S| Since

|R| = 

(1 − S)−1(1 + S)


= 


(1 − S)−1

|(1 + S)| =
|1 + S|

|1 − S|
= 1

and so thisR is indeed a rotation matrix.

The pair of Eq. (1.9) and (1.10) establishes the one to one mapping between skew
symmetric matrices like S and rotation matrices like R. So giv en a 3× 3 rotation matrix
that has 9 elements we can compress it down to a skew symmetric matrix that has only
three (independent) elements. And a 4× 4 rotation matrix can be compressed down to 6
numbers (something to know if your four dimensional relatives from Andromeda invite
themselves and ask for directions to your home). The proof that theR given by Eq. (1.10)
is the same as the one in Eq. (1.9) is straightforward but tedious. You have to substitute
Eq. (1.9) into Eq. (1.10) and massage the expression until you getR. It is a good exercise,
so let us do it.

(1 − S)−1(1 + S) = (1 − (R − 1)(R + 1)−1)−1(1 + (R − 1)(R + 1)−1) =



(R + 1)(R + 1)−1 − (R − 1)(R + 1)−1



−1


(R + 1)(R + 1)−1 + (R − 1)(R + 1)−1


=



((R + 1) − (R − 1))(R + 1)−1



−1


((R + 1) + (R − 1))(R + 1)−1


=



21(R + 1)−1



−1


2R(R + 1)−1


=

1

2
(R + 1)2R(R + 1)−1 = R

since (R + 1)R = R2 + R = R(R + 1).

Matrix S being skew symmetric has the form

S =





0

sz

−sy

−sz

0

sx

sy

−sx

0






and the three scalarssx, sy and sz are calledRodrigues parametersand are often orga-
nized in a vectors

s =





sx

sy

sz






which has some nice properties. It is the axis of the rotation, which one can show easily
by proving theRs= s and has length equal to the tangent of the half angle of the rotation
which is slightly harder to show. Unfortunately, when the angle of rotation is 180 degrees,
the half angle is 90 and the tangent is infinite. So the Rodrigues parameters cannot

138 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

represent 180 degree rotations.

1.2.2.4. Quaternions

This little nuisance can be corrected by the use of quaternions. These are four
dimensional relatives of the Rodrigues parameters (not the kind that invite themselves to
dinner) developed by Sir William Rowan Hamilton sometime in the nineteenth century
and nobody ever thought that they were invented in the twentieth or twentyfirst century. A
quaternion these days is defined as

q =
1

√ 1 + s2
x + s2

y + s2
z







1

sx

sy

sz







.

The quaternions are unit vectors (at least when used to describe rotation) and can repre-
sent any rotation including rotations by 180 degrees, as long as one does not try to com-
pute them using Rodrigues parameters as intermediate. The quaternions were proposed
partly as a 4 dimensional extension to the complex numbers since this is what was hot
back then. Quaternions are still used in some engineering applications for the several
advantages they provide: they do not involve trigonometric functions, are more compact
than rotation matrices, have no singularities, are numerically stable and very elegant. But
their popularity is nowhere near what Sir Hamilton was hoping when he authored his 800
page strong book “Elements of Quaternions”. They were largely replaced by the much
more convenient vector calculus by the middle of the twentieth century.

Shortly after the development of the quaternionLie Algebraswere in vogue and
Cayley’s formula was once again employed to generalize geometric transformations. Lie
algebras are always rumored to have applications in a field other than your own.

There are many ways that the quaternions could be used. One is to represent the
rotation matrix and convert back and forth between the matrix and the quaternion as we
need. This way we seemingly have the advantages of both. A compact representation and
a convenient way to perform operations. But we miss most of the fun of playing with a
new species of numbers this way.

We opt instead to represent is as the linear combination of four basis vectors so that

q =







a

b

c

d







= a







1

0

0

0







+ b







0

1

0

0







+ c







0

0

1

0







+ d







0

0

0

1







= a + bi + cj + dk

and this notation is chosen so that it resembles complex numbers and looks like a general-
ization of them. We usually calla the real part of the quaternion and the other three the
imaginary part. If a quaternion has its real part equal to zero and at least one of the rest
non zero we call it imaginary. If the real part is the only non-zero we call it real. If two
vectors have equal real parts and opposite imaginary parts they are conjugate. Then use

Ch. 9. Sec. 1. Motion Representation 139

Spetsakis Computer Vision

the rules that sir Hamilton made up go with these vectors which can be written as fol-
lows:

i2 = j2 = k2 = ijk = −1

and from these we can derive all other rules like

ij = −ji = k

jk = −kj = i

ki = −ik = j

and 799 more pages of rules, theorems and advocacy. Since sane people do not open
books whose covers are so far appart, we write down a few random vectors and play and
see where it will take us.

(c + si)(xi + yj + zk)(c − si)

wherec ands are the sine and cosine of some angleθ andx, y, and z are some real num-
bers.

(c + si)(cxi + cyj + czk + sx+ syk − szj) =

(c + si)(sx+ cxi + (cy − sz)j + (cz+ sy)k) =

csx− c2xi + c(cy − sz)j + c(cz+ sy)k + s2xi − csx+ s(cy − sz)k − s(cz+ sy)j =

xi + (c2y − s2y − 2scz)j + (c2z − s2z + 2scy) =

and if we translate it in our more familiar vector notation we observe that this represents a
rotation around theX axis






x

cos(2θ)y − sin(2θ)z

cos(2θ)zsin(2θ)y






=





1

0

0

0

cos(2θ)

sin(2θ)

0

− sin(2θ)

cos(2θ)











x

y

z






= Rx(2θ)





x

y

z






and after we stare at this result for a few minutes we can figure out a way to use quater-
nions. To rotate a vector






x

y

z






we first form the imaginary quaternion

p =







0

x

y

z







140 Ch. 9. Sec. 1. Motion Representation

Computer Vision Spetsakis

and use it to represent our vector. We then represent the rotation as a quaternionq and the
rotated version ofp we can easily verify that it is

(1.11)p′ = qpq*

whereq* is the conjugate ofq (sign of imaginary part flipped). With quaternions, in other
words, we do not need to compute a rotation matrix as an intermediate for rotating a vec-
tor. Furthermore, our familiar dot and cross products for imaginary vectors are

p1 ⋅ p2 =
1

2
(p1 p*

2 + p2 p*
1)

and

p1 × p2 =
1

2
(p1 p2 − p*

2 p*
1

which gives us most of the tools to handles real world geometry problems of the kind we
encounter in vision and robotics.

We defined quaternions and their mathematical operations but it all seems to leave
us with a sense of emptiness. The feeling that some guy a century and a half ago got this
idea, possibly after prolonged navel gazing. They seem like a cheap trick. And the fact
that they did not survive intensifies the feeling. But this would be unfair. Most of the
grand ideas had similar origins and quaternions do not produce incorrect results or mere
approximations, they are mathematically equivalent to well accepted other methods and
they are unsurpassed in elegance and versatility. They were abandoned because other
methods were more handy but most importantly were better suited for computer program-
ming. There a few applications were quaternions still have a small advantage but even
then they are used merely as a compact singularity free representation of rotation. Occa-
sionally Eq. (1.11) is also used and a few others but the rest of Hamilton’s ponderous
tome has been mostly abandoned.

But as a requiem to a great idea let’s look at the generalization from real numbers to
complex to quaternions. We all agree that imaginary numbers do not exist, hence their
name. So the equation

x2 + 1 = 0

does not have a solution. How about trying to find a 2× 2 matrix that satisfies it where the
scalar unit is replaced by a 2× 2 identity matrix. After some guessing we can think of the
matrix

j =




0

−1

1

0





tha obviously does the job. So our familiar imaginary unitj is really a matrix. And every
complex numbera + jb is again a matrix

Ch. 9. Sec. 1. Motion Representation 141

Spetsakis Computer Vision





a

−b

b

a





and by using the matrix multiplication and addition for complex multiplication and addi-
tion, transposition for conjugation, and determinant for norm we can replicate complex
algebra. So complex numbers are nothing more than weighted sum of the following two
matrices

1 =




1

0

0

1





j =




0

−1

1

0




.

and our quest is to use the same tricks to define the basis quaternions. It does not take
many trial and error attempts to get them

1 =




1

0

0

1





i =




i

0

0

−i





j =




0

−1

1

0





k =




0

i

i

0




.

and a quaternion







a

b

c

d







can be written as





a + jb

−c + jd

c + jd

a − jb





and if we want to use quaternions without complex numbers then it becomes a 4× 4
matrix







a

−b

−c

−d

b

a

d

−c

c

−d

a

b

d

c

−b

a







and every quaternion operation maps to a corresponding matrix operation in fashion simi-
lar to complex number. So the question remains: if quaternions map to matrices, why not
use them? The answer is simple. A quaternion rotation requires two 4× 4 matrix multipli-
cations and close to 200 operations. A rotation with a rotation matrix requires a 3× 3
matrix vector multiplication and about fifteen operations.

142 Ch. 9. Sec. 1. Motion Representation

