Computer Vision Spetsakis

1. Motion Representation

To lve any problem irvolving motion in 3-D we hee o havea way to represent
3-D motion. Motion representation is a well understood problatralnon trivial one.
There are manpossible representations and each one has advantages andrdegel.
The troublemaker is rotation. Poor translation has only a couple. But rotation! Rotation
has the Rodrigues parameters, the Euler angles (24 diffensorsftef them, 12 of which
are really called fi@d), quaternions, angle and axisy r@atation matrices. Before we get
scared, it is not that mathematicians are so much smahteyr just tale care of their
image very well. The relation between quaternions and Rodrigues parametetfialjs tri
the Rodrigues could be named axis and tangent of half angle, the Euler angles is what a
roboticist would come up with. There are twenty four of them to accommodate all possi-
ble definitions of coordinate systems attached to robotic body parts. And no representa-
tion of rotation is ay good if not associated with a rotation matrix. As for disadages
each one has its own. The Rodrigues parameters cannot represent rotations of 180
degrees. All Euler angles fia two representations (twsets of angles represent the same
rotation) plus thg havesingularities (infinite number of solutions at av/feertain points).
Quaternions can represent anything without singularities boitve4 rumbers instead of
three. And a na rotation matrix is the best in pther respect but it wolves 9 numbers.
And only the Rodrigues parameters and the maatrix can be extended to more than
three dimensions (which is good to knon case you need towg diving directions to
4-dimensional aliens).

To make things slightly more compiethe representations of rotation and translation
can be used either directly or embedded in a homogeneous transformation which is just a
4 x 4 matrix. The homogeneous route is used in graphics libraries due to their simplicity:
instead of haing to carry a rotation matrix and a translatiector they carry a 4x 4
matrix only It is often preferred in robotics and computer vision mostly for the same rea-
sons. The issue of ceenience, carried seral steps furthera@yerise to projectie geom-
etry. Another mathematical trick to impress the common folk.

Finally, we seem to tak for granted that gnmotion can be represented by a rotation
and a translation. While the assertion is certainly correct and plainly obvious, one has to
prove it. Unfortunately proving that grrigid motion can be represented by a rotation and
a translation is quite hard. Fortunately ifes§ no intuition and no insight and can be
safely omitted. The opposite, proving thay aatation and translation constitute a rigid
motion is much simpler and offers some useful insight.

1.1. Trandation Vector Poor translation ector It has only one representation really
Let the translation vector Be

and a poinP
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is translated té’, just by adding vectdr to it
P =P+T.

It is not hard to pree that translation is a rigid motion. &\nly have o prove that the
distance between grpair of of pointsP; and P, does not change with motion. So let us
prove that

[[P1 = Paf| =Py = Pl
where the primed symbols are the points after the motion. Starting from the right hand
side
[IP's = P2l =[P+ T = (P2 +T)||=[|P1 = P2l|.

That's a nce one line proof.

1.2. Rotation Matrix Now the hard part. @ make a rard problem slightly easier lets
sojourn to the world of a chicken that did not cross the road alldlgdmthis 2-D world
we can rotate only around a pointvg) by some anglé@ and unless specified otherwise,
the pwot is the origin of the coordinate system. So a 2-D pBint

O
Q= be O
Ay O
rotates to point
O
Q= Eb,x 0
MAyO
and the coordinates of these points are related as follows:
q'x =(xC— st

q'y = 0dxS+0qyC

wherec = cos@) and s =sin(@). Andif we want to pretend that we are adults and write
it in matrix form

Eh’DEP—s o

X
0., 0= O
Ayp B chypg
Q =RQ

where
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_F 7SO
R= s o0 (1.2)
is the rotation matrix.We mght be tempted to dee sme properties from this simple
matrix and generalize to three (or more) dimensions. Unfortunately pneperties are
specific to the wrld of flat chicken, so we ka o be @reful. One property that holds for
all rotation matrices is the value of the determinant

|R|=c®+s°=1.

1.2.1. Rotation and Rotation M atrices

As opposed to translation where we added vectors, in rotation we multiply the
point vector with the rotation matrix.oTexplore our nev found mathematical structure
further we try to establish that the rotation is a rigid transformati@retrn from the
world of flat chicken back to 3-D and try to find if the distance betwegmpain of points
P, andP, does not change with rotation

IPL = Pal[= Py = P| (1.2)

where the primed symbols are the points after the motion
P = RP, (1.3)

Starting from the right hand side of Eq. (1.2) we write
IP"s = P2l = [IRPy = RP,|[ =

(RPL = RP,)"(RP, = RP,) = (Py = P;)T RTR(P, — Py) -4

If RTRis anything other than the identity matfixhen we cannot prwe Hj. (1.2) forall
vectorsP;. So he only way that (1.3) can represent rigid motion is if

RTR=1 (1.5)

which is a definitre poperty of rotation matrices. In fact the definition of a rotation
matrix is that it satisfies Eq. (1.5) and has unit determinant. Armed with Eqg. (1.5) we can
continue Eq. (1.4)

(P1=P2) (P = Py) = |IPy - Pyl

1.2.2. Representation The rotation matrix represents a rotation in the most general
form, can bexended to arbitrary (but finite) dimensions, has no singularitiesydfiad

and is unique (if tw rotation matrices represent the same rotation then thenbtrices

are equal). But it molves too may humbers and these numbery&ao immediate pis-

ical meaning. The redundanwill give ws trouble if we try to estimate them and the lack
of direct physical interpretation will limit the connection to the underlying physical prob-
lem.
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1.2.2.1. Fixed Angles

We have already seen the 2-D rotation in Eq. (1.1) and does not look too bad. It
involves one parameter onhe angle of rotation, and thevpi of the rotation is by con-
vention the origin. The matrix is only 22 and of very simple form. He about etend-
ing it to three dimensions. &l know that orientation in 3-D wolves three motions:
pan (left and right), tilt (up and down) and roll (what is left), or if you are a sailor roll,
pitch and ya. These correspond to rotations around Xher and Z axes. So forget all
you learned in your math courses, head for the port and ask an old gatailan that
has surwed a force nine storm will tell you that the rotation around Xhaxis is

m 0 00O
Ry(61) = Eb Cy _Slg (1.6)
M s ¢
the rotation around theé axis is
Oc, 0 s,0
Ry(62) = E 0 1 0 B (1.7)
s 0 ¢
and therotation around th& axis is
(s -s3 00
R,(63) = 553 Ca og (1.8)
00 0 1

Now all we hare © do is multiply them together and get
R= Rx(el) Ry(ez) Rz(es)

which we can expand and get

O C,C3 —C2S3 S7E
R=leszcs+clss ~$,8,%+C; Cy —slczg
[TC1$C3+t5S3 C1SS3+5C3 C1C O

This matrixR certainly does not look friendlyVhile ary Computer Scientist or Engineer
can computeR numerically gven the three angles (which keeping with our holy tradi-
tions we call forvard kinematics), it does not seem easy to go wWesa way and com-
pute the angles ggn R. But then we do lig atempting the impossible when we kmat

is possible.

After staring at the beast for aMfeninutes we notice that;, the upper right ele-
ment is equal t®,, the sine o®,. So we @n get tvo solutions forg, and we can assume
that c, is known (it has tw possible alues so we repeat the procedure twice). Armed
with this we notice that
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and so we can find a solution ®y

1o T
05 = atar2(- =2 , -11).

C2 C
We @an repeat the procedure #@yr
;
5 =--2
C2
r
c = =2
C2

and so

oz Is3
6, = atan2(—- —, —).
) 5o
We ae almost done. What &, = 1 which malesc, = 0. It will be impossible to dide
by c, then. The secret in Computeisidn and Robotics (as well as irgdactic travel) is
DO NOT PANIC. Thelower left 2x 2 submatrix of R has not been used sax.flt is not
too late. Ifs, = 1 then this matrix becomes

Cs1c5+ €185 €163~ 51850
153~ C1€3  $1C3+C1S3

which can also be written as

Usj3  cy30
€13 Si3[]

where s;3 =sin(@; + 83) and c;3 = cos@; + 83). While it does not look intimidating it
does not hee wnique solution. W can compute

01 + 63 = atan2(r,;,r, o)

but we haveinfinite solutions for each individual angle. In other words a singuldtity
seems that we killed this singularity rather too eabilyractice it is ery hard to decide
when a number is zero or one. Since the computess fimite accurag, a 2ro might be
represented by a very small number and an one by a number very closeab &actly
one. © compound our miseryhe round-dferror might be slightly different on dérent
computers or with different compilers. The only solution is trial and error.

But before we go to the next chaptee reed to find out wiis this representation
called Fixed Anglesit does not seem likely that thevere introduced by a guy named
Joe Fixed, or these angles can be viewed as neuterede Wy, let us go back to the
definition of R
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R= Rx(el) Ry(ez) Rz(es)

and obserg that rotation matrices mean nothing unless we use them to rotate something.
So let °P be a point in the third coordinate system (we need more than one since we
have tree rotations), which initially is coincident with the world frame. Frames 1 and 2
are also coincident with the world frameeMWitst rotate frame 3 around th# axis of

frame 2 (same as frame 1 and world frame) and get

2p = R,(6,) 3P.

We then rotate frame 2 (with frame 1 rigidly attached to it) around/'thgis of frame 1
(same as world frame) and get

1P = Ry(92) ZP = Ry(ez) RZ(H3) BP-
And finally we rotate frame 1 around teaxis of the world frame and get
P = Ry(61) p= R« (61) Ry(gz) R,(65) °p.

It is now clear that the representation is calleckefixangles because each time we rotate
around an axis that ifixedto the world coordinate system. If we were modeling the
motion of a robot wrist we awuld rotate the last joint of the wrist first By then the sec-
ond last joint byg, and finally the first joint of the wrist by an angle Most books call
this representatiorrixed AnglesZ —Y — X and the angles are written a&;,@,, 6,).
There are twelw variants of these lik& -Y -Z, X-Y-Z, X-Y - X, €c.

1.2.2.2. Euler Angles It is easy to rotate around a cardinal axis using the notation in
Egs. (1.6), (1.7) and (1.8). But if weveese the order of the operations in the wrisdra-

ple abe@e and rotate the first joint of the wrist first, when we rotate the second joint we
are no longer rotating around the origifvalaxis but a rotated version of it. And this
sounds lile an avfully complex thing to do. But it is not. After you ka rotated the three
joints of a wrist it does not matter which one you rotated firsy. Batkhoe operator can
verify this for you lut a mathematician can p@it. So the representation ateois dso
Euler AnglesX —Y - Z and the angles are written a&,@,, 63). There are another 12
variants of these too.

The Euler angles are by far more popular! The reasons are that we can sound more
scientific (very fashionable for almostdveenturies now) without doing much, confuse
the uninitiated, andvaid invoking feelings of guilt to typical dog and cat owners.

1.2.2.3. Cayley’s Formula and Rodrigues Parameters

Cayleys Formula, Rodrigues parameters along with quaternions and Lie algebras
are based on the same idea which with sucszasmination has gen us nary “differ-
ent” concepts. Since thebelong to theseen-one-seen-them-allass of ideas we treat
them togetherSo we sart with Caylg and his ground shaking formulas (there are)tw
Let Sbe
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S=(R-1(R+1)* (1.9)
whereR is as alvays a rotation matrix. One can pethat
S'=-s
Sis in other words a kv ymmetric matrix. It is fairly easy to do so. First notice that
S=(R-1)(R+)t=RR+D)-(R+1*?

and so

S =(R +1) R -(RT+1)t=

(RT+1D)RT-(AIR"+RR) 1=

-1 -1
T u g -0 _
Q«R+nm 1+RR
1+R*-RR+1D =-S5
and if you are not feeling the ground shakirgtvfor the second installment of Caye
formula:

R=(1-971+9) (1.10)
in other words fromS we can get baclR. We @an easily pree that R is a rotational
matrix if Sis a skew symmetric matrix. First we shwothat it is orthonormal:

RR =(1-97}1+9(1+9"(1-9 " =
1-97'1+9(1-91+97t=
1-911+S-S-SH)(1+9 1=
1-97'1-9@+9@1+9t=1
Then we she it is not just orthonormal but a true rotation matrix, it has that is a pesiti
unity determinant. There are nyaways to pree it, bu the one that requires the least
typesetting is the follwing: Two matrices that hze the same eigealues hae the same
deperminant since the determinant is just the product of theveiges. \\& will show

that matriced — Sand1l + S have the same eigemlues and so the same determinant. Let
A be an eigevelue of 1 - S. Then

0=[1-S-A1|=

1-S-1)"H=

fL-s-a17

T =

-S" - 118=

SRRIREE
I1+S- A1
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SoA is also an eigemlue of 1 + S, thus|1+ § = |1 - §| Since

_+S

IR| = Etl— S L1+ s%: E{l— S)_la(1+ 9)| = s 1

and so thisRis indeed a rotation matrix.

The pair of Eq. (1.9) and (1.10) establishes the one to one mapping beteeen sk
symmetric matrices |& S and rotation matrices l&R. So gven a 3% 3 rotation matrix
that has 9 elements we can compresswrdto a skw ymmetric matrix that has only
three (independent) elements. And a4 rotation matrix can be compressed down to 6
numbers (something to kwoif your four dimensional relates from Andromeda wite
themseles and ask for directions to your home). The proof thaRtgeen by K. (1.10)
is the same as the one in Eq. (1.9) is straightiadvibut tedious. You ka to substitute
Eq. (1.9) into Eq. (1.10) and massage the expression until yd ges a good eercise,
so let us do it.

(1-971+9=1-(R-DYR+YH QA+ (R-HR+D ) =

-1
BR"' 1)(R+ 1)—1 _ (R_ 1)(R+ 1)—15 BR+ 1)(R+ 1)_1 + (R— 1)(R+ 1)_152
=1
AR+D - (R-D)(R+D? {R+D+(R-D)R+D =

-1
2UR+D T PRR+1) =
% (R+1)2R(R+1) =R

since R+1)R=R?>+R=R(R+1).
Matrix S being slew gymmetric has the form
00 -s, s 0O
S= B s, 0 -s B
TSy Sk 0O

and the three scalasgg, s, ands, are calledRodrigues paametersand are often ge-
nized in a vectos

(7))
1
(|
o
Ooono

S0

which has some nice properties. It is the axis of the rotation, which one carasily

by proving theRs= s and has length equal to the tangent of the half angle of the rotation
which is slightly harder to sk Unfortunately when the angle of rotation is 180giees,

the half angle is 90 and the tangent is infinite. So the Rodrigues parameters cannot
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represent 180 degree rotations.

1.2.2.4. Quaternions

This little nuisance can be corrected by the use of quaternions. These are four
dimensional relaties of the Rodrigues parameters (not the kind that invite themselves to
dinner) deeloped by Sir William Rwan Hamilton sometime in the nineteenth century
and nobody eer thought that thgwere irvented in the twentieth or twentyfirst centusy
guaternion these days is defined as

O
[EEN

x

OOoaOomO

Yy
Us,

pisy.

VirgieETs

The quaternions are unieetors (at least when used to describe rotation) and can repre-
sent aw rotation including rotations by 180 degrees, as long as one does not try to com-
pute them using Rodrigues parameters as intermediate. The quaternions were proposed
partly as a 4 dimensional extension to the complembers since this is whatas hot

back then. Quaternions are still used in some engineering applications fovdte se
adwantages theprovide: the/ do ot involve trigonometric functions, are more compact

than rotation matrices, @ ro sngularities, are numerically stable and verygate. But

their popularity is nowhere near what Sir Hamiltoasvhoping when he authored his 800
page strong book “Elements of Quaternions”. yrere largely replaced by the much

more corenient vector calculus by the middle of the twentieth century.

Shortly after the deslopment of the quaterniohie Algebraswere in vogue and
Cayleys formula was once again employed to generalize geometric transformations. Lie
algebras are ahys rumored to ha gplications in a field other than your own.

There are manways that the quaternions could be used. One is to represent the
rotation matrix and comrt back and forth between the matrix and the quaternion as we
need. This way we seeminglyveaihe advantages of both. A compact representation and
a convenient way to perform operations. But we miss most of the fun of playing with a
new species of numbers this way.

We oot instead to represent is as the linear combination of four basis vectors so that

o o o Po Po
bO [0 MO [pOd O

q=0_[= a1+ b, o+t e, [+ dry, 0= a+ bi +¢j +dk
0 %D %D %D %D
dO MO MO OO MmO

and this notation is chosen so that it resembles camplabers and looks l&ka gneral-

ization of them. W wsually calla the real part of the quaternion and the other three the
imaginary part. If a quaternion has its real part equal to zero and at least one of the rest
non zero we call it imaginaryf the real part is the only non-zero we call it real. 1b tw
vectors hae ejual real parts and opposite imaginary party @me conjugate. Then use
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the rules that sir Hamilton made up go with thesetars which can be written as fol-
lows:

i2=j2=k?=ijk =-1

and from these we can dezidl other rules like

ij =-ji =k
jk=-kj =i
ki =—-ik =]

and 799 more pages of rules, theorems andcady. Snce sane people do not open
books whose aers are so far appart, we write down & f@andom vectors and play and
see where it will tad us.

(c+si)(xi +yj +zk)(c - si)
wherec ands are the sine and cosine of some amdadx, y, and z are some real num-
bers.
(c+si)(cxi +cy) +czK + sx+syk —s7) =
(c+si)(sx+cxi+(cy—s2)j +(cz+syk) =
csx— C?xi + c(cy — s2)j + c(cz+ sy)k + $2xi — csx+ s(cy — sk — s(cz+ sy)j =
Xi + (c?y — 2y — 2sc?)j + (c®z - s°z+ 2scy) =

and if we translate it in our more familiar vector notation we olesibat this represents a
rotation around th& axis

0 X O M 0 0 0 Ox0O (X J

— i 0= —qi 00y O= O
Bcos(m)y _sm(2.9)zD Eb 095(29) sin(2p) - E‘yD RX(2.9)D -
gcos(d)zsin()y o O sin(2) cos(P) iz Z0

and after we stare at this result for & f@inutes we can figure out aay to use quater
nions. D rotate a vector

X

H
0
020

we first form the imaginary quaternion

0o
Uy O
pP=0. 0O
YO
0z O
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and use it to represent owrctor We then represent the rotation as a quatergiand the
rotated version op we can easily verify that it is

p' =qpq (1.11)

whereq’ is the conjugate of (sign of imaginary part flipped). With quaternions, in other
words, we do not need to compute a rotation matrix as an intermediate for rotagicrg a v
tor. Furthermore, our familiar dot and cross products for imaginary vectors are

1 X N
p1 Ly = §(p1p2+ P2P1)
and
1 * *
P X P2= E(plpZ_ P2 Py

which gives us nost of the tools to handles reabsdd geometry problems of the kind we
encounter in vision and robotics.

We cefined quaternions and their mathematical operatians lll seems to lee
us with a sense of emptiness. The feeling that some guy a century and a half ago got this
idea, possibly after prolongedvehgazing. Thg seem like a dieap trick. And theact
that thg did not surwe intensifies the feeling. But this would be ainf Most of the
grand ideas had similar origins and quaternions do not produce incorrect results or mere
approximations, theare mathematically equalent to well accepted other methods and
they are unsurpassed in glance and ersatility They were abandoned because other
methods were more handy but most importantly were better suited for computer program-
ming. There a f& applications were quaternions stillvea snall advantage butven
then thg are used merely as a compact singularity free representation of rotation. Occa-
sionally Eg. (1.11) is also used and @ fethers but the rest of Hamilt@jponderous
tome has been mostly abandoned.

But as a requiem to a great ideadddok at the generalization from real numbers to
comple to quaternions. W dl agree that imaginary numbers do not exist, hence their
name. So the equation

X>+1=0
does not hee a slution. Hav about trying to find a % 2 matrix that satisfies it where the

scalar unit is replaced by ax2 identity matrix. After some guessing we can think of the
matrix

. Uo 10
j=0 O
ol 0g

tha obviously does the joBo aur familiar imaginary unit is really a matrix. And\eery
complex numbera + jb is again a matrix
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Oa pO

0 0
ob apg

and by using the matrix multiplication and addition for compieiltiplication and addi-
tion, transposition for conjugation, and determinant for norm we can replicate gomple
algebra. So comptenumbers are nothing more than weighted sum of the followirng tw
matrices

ol Do 1D
I
BO 15 Tt oo
and our quest is to use the same tricks to define the basis quaternions. It does not tak
mary trial and error attempts to get them
l_Dl OB i_Di OB j_DO 1D k—EO |D
Dig T -ig'Tptog g oo

and a quaternion

A",
OoOoOooOoo

can be written as

Oa+ijb c+jdU
D—c+'d a—'bD
gc*! PO

and if we want to use quaternions without complembers then it becomes ax4
matrix

na b ¢ dp

b a -d cU
B—c d a —bg

+d -¢ b a®d

and &ery quaternion operation maps to a corresponding matrix operation in fashion simi-
lar to compl& number So he question remains: if quaternions map to matriceg,nwh

use them? The answer is simple. A quaternion rotation requioe$xw matrix multipli-
cations and close to 200 operations. A rotation with a rotation matrix requires3a 3
matrix vector multiplication and about fifteen operations.
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