CHAPTER 3

I ntroduction to Statistical Estimation

1. TheSmplest Kind of Statistics

Least Squares is the simplest and most intuitind of statistics and often the most
useful. The most straightfoesd application is as follows. 8\havea st of quantities that
we would like to be ero or as close to zero as possible ang iedepend on a set of
unknavns. W take the squares of all these quantities, sum them up and then minimize
this sum with respect to the unknowns. There areyrali@rnatives to least squares that
sometimes hze interesting properties (most notably robustness to outliars)east
squares is not only the simplest but is also the basis for most of the alestnati

2. Point in theMiddle

Consider the following very simple problemeWant to find a poinP and all we
have is a £t of seeral approximations oP which we callP;, i =1..N. If of course all
the P;s ae identical the choice is eagitherwise we would li& P to be as close to all of
them as possible. &form the sum of the squared differences

Q(P) = 3(P, - P
i=1

The standard way to minimiZ@ is to tale its dervatives with respect to the unkmms

and equate them to zero. Solving these equations wil g8 P, the vector of the
unknavns. In this very simple problem solving the equations is, dagytaking the
derivatives is dightly more complg. We examine tw ways to tak these dewatives.

One is scalar (element by element) datives and the other is vector deatives.

2.1. Scalar Derivatives

Our unknowns are the elements of the veBtor
0P O
Op., O
gk
00
Pk O

and our data are the vectdts
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P10

U
Pi :Bp'ZD
O 0
[Pik U
So
N K ,
Q(P) =2 2.(pij — pj)
i=1j=1
and
QP)_$§ 9 =
0 px igljglapk(p” Pi)
N K ap, N K
‘Zzza—(pij‘pj):‘zzz5jk(pij‘pj)
i=1j=1 Px i=1j=1

whereg;; is the Kronecker delta, e.g; =0 iff i # j andg; =1 which of course mads
perfect sense: the degtive d an unknowvn with respect to itself is equal to one and the
derivative d an unknown with respect to a ddrent unknown is zero. The delta affords us
some simplifications, so

0Q(P) S
=2 =
Ty El( Pik = Px)
which if we equate to zero we get
N
_Zl Pik
— 1=
Pk = N

e.g. &ery element of the unknown vector is theeage of the corresponding elements of
the data.

2.2. Vector Derivatives

A more compact and mainly more g#at way of doing the same thing is taking
vector dervatives. Most of the rules of scalar detives gply, some with a small quirk.
Let's dart.

The notation

oQ(P)
oP

indicates a vector whose elements are the scalaratiees d Q(P) with respect to the
corresponding element &f (remembelQ is a scalar). Sometimes the “grad” notation is
used to indicate the same thing

Ch. 3. Sec. 2. Point in the Middle 17



Spetsakis Computer Vision

0Q(P)

—p = 0eQ(P)
where the subscrif® is the \ector with respect to which the dedtives ae taken. If it is
obvious what this vector is (in mgphysics problems it is alays the position vector) it

is omitted. So

0QAP) _ Ly o
)= L EP-PR=2 LR~ PY(R - P) -

z (P P)TSP P)——ZZ—PTSP P)

where the devitive d P; is zero, because it is constafthe dervative o a row vector
with with respect to a columregtor is a matrix. Every voof this matrix is the devative
of the rav vector with the corresponding element of the coluraatar In our case the
derivative d P with respect to itself is the identity matfixSo

0Q(P) —221(P P) = ZZ(P P)
oP =
which if we equate to zero we get
N
P;
.. 2 2.1)
N

which is essentially the same as before.

3. LineFitting

In the problem abee we had a collection of point®; and we found a poinP that is
closest to all of them, in the least squares senseawtry something slightly more com-
plex now, like finding a linel that is closest to all poin;. Let linel be represented by
two vectors

I'=(p,0)

where a poinP; belongs td iff there is a1 such thatp+ Aq = P;. Vector p is a point on
the line and gctorq is the direction of the line. There are othexyw to represent a line
but this one suits, for the time, our purpose bettawvorks equally well for lines in the
plane or in a space of arbitrary number of dimensions. But most importants akoto
explore a fev interesting concepits.

Since we want to minimize the distance of the pdhtdom the linel we first need
to express this distance as a nice and easy to use expression. Theie epavalent
ways to define the point to line distance. The one is to define a normal line that goes
through the point and intersects the lirag a right angle and then measure the distance of
the point from the liné along the normal line. The second way is to find the distance of
the pointP; from a pointP’; that lies on the liné and then slide the poif; along the
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line | till this distance is minimized. This minimal distance is the one we want. Since we
have the machinery to minimize things we opt for the second approach. If wauaha
hammer eerything looks lile a rail.

So the (squared) distanE¥ of the pointP; from the linel is
D = min(P; - p - Aq)?

but if we want to do anything useful with it weeat get rid of the min symbol by find-
ing the minimizing with respect tb. As before we tak derivatives

oPi-p-Aa)® _ o+
A =-29 (Pi - p-40)
and by equating it to zero we get
,= 9 (Pi-p)
q'q
which gwves us he expression for distance
2
2 _ _ l
D? = (P - p) ( P
which, striving for elgance we rewrite as
T 2
2-th_ 9 yp _p)U 3.1
D? = {1 q7g PPy (3.1)

Now we havean expression for the distance of a pétpfrom the linel and it is already
squared. @ proceed with our least squares we sum up all these squared distances and find
the line parameterg andq that minimize this sum. W4art by defining the sum

qﬂm=%D?

and we tak the demvatives first with respect t@

0Q(p,q) _NoD? _ _Nop'  qu'.,. qq',_ . _

ap é ap - éa—(l q)(l ﬁ)(Pi p) =

N T
-2 _z(l )(1 9o =

1=1 q

qq’ qq’
_2 —
@ a'q q)(1 q) IZ(P

which we can equate to zeroe\Wan verify that
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N
2P, (3.2)

satisfies the resulting equation, although it is not a unique solution. giegast a point
on the line it is as good asyaother point on the line. But we prefer the oneegiby £j.
(3.2) because it is identical to the oneegiby Ej. (2.1) and does not contain

On toqg now. It appears that Eq. (3.1) is not géat enough and we should impe
it. Consider the following well known identities for a vector

v=vy=viv=tr(w')

wheretr (--+) is the trace operator (sum of diagonal elementdg ae mainly interested
in the last version to apply it to Eq. (3.1) which becomes

_ X 'O, _ _qq' m
Qp, @)= 3 1A= o AP - PP - )T -

qTq

and by noticing that the trace operator is linear and that the first and last parenthesized
guantities do not depend on the indexe can rewrite it as

i T
QP =tr - %E %(Pi -pPi- P —%%z

T
N e e B B ok
where

;}P PP - p)'
C= N

and we applied the folaing property of the trace for wmatricesA and B of appropri-
ate dimensions

tr (AB) = tr(BA)
Then noticing that the product

_a'0g a9’ O

q'qbd g'qO
,00'aq" _ga’ a9’ _

a'qgq'd 9'q q'q
_w' 0

qrqb
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.
m
Q(p,q)=N trgc -%m

and by ivoking the abwe property of the trace we get

;
M Cano (3.3)

Q(p,g)=Ntr(C)-N trD @ 0

which is undoubtedly the most gbat of equations.

Matrix C is a constant so it does nofesft the minimization which can be acked
by maximizing the scalar

q'Cq
q2
which is just a Rayleigh Quotient and is maximized whes the eigewector that corre-
sponds to the largest eigafue.

There are a fe remarks that we can malon this result. First, we find the line
direction g without taking denatives, just by using a canned theorem (we, in other
words, outsourced the deatives to Dr. Rayleigh). Second the poini can be of an
dimension: tw dimensional points on the image plane, three dimensional points in the
real world or ten dimensional characters in a Douglas Adang. richird we can gtend
the result to structures of higher dimensions than lines, fliking a plane in a four
dimensional space, as we might need if we fit ineaflov to a £t of image displace-
ment data. And finallythe same technique can be applied to find the principal direction
of ary elongated object,ven if we are not particularly interested in line fitting.

3.1. Alternative Way to Fit aLine

In a field as ancient as analytic geometry there are for sungwas to represent a
line and about as mgrways to fit a line. If we are interested in lines in the 2-D plane
only, the equation

ax+by+c=0 (3.4)

can represent a lineaRmetersa, b and ¢ are the parameters of the line and a point
P =[x,y]" belongs to the line if and only if it satisfies Eq. (3.4). It is easy to see that if
we are gien two mpints P; =[x, y1]" andP, =[x,, y,]" we can form tw equations

aX1+by1+C:O

aX2+by2+C=0

and sole for a, b andc. Wait a minute! V@ havetwo eguations and three unkwas.
Before we jump into conclusions éKEucleides was wrong”, it isevth noticing that the
two equations are homogeneous and we canveedbe triplet of unknowns up to a scale
only. So we &her setc to unity and solg for the other two, oito avoid, in case the real
value of ¢ is zero, falling into a singularitywhich all respected authors of the blogo-
sphere assure us it is a black hole, we set the sum of the equares of the thiwasuttkno
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unity and sole three equations with three unknowns.

A far more interesting problem is to find the solution when wwe maary more
points P; =[x, y;]", fori =1..N than the minimum two. The easiest and laziest thing to
do is just sum up the squares of Eq. (3.4) applied to all pBjnts

Q(a,b,c) = 3 (ax; +by; + ¢
i

It is not at all obvious what the ypéical meaning of the squared quantities is, but this
does not stop us. If we define

(]
_ 0,0
A=Pr
O
and
'O
Xp =0y O
tq O
we can rewrite
' N [] ﬁ N
Qab,c)=3 TxiD =3 ATxx] A
i=1 i=1

(3.5)
AT%xixiTgA: ATMA
where
N
M= xx'.
i=L

We rotice immediatelly tw things. The first is that Eq. (3.5) is homogeneous and so the

trivial solution (A = 0) minimizesQ. The second is tha, the \ector of the parameters of

the line is scale independent, thatAsanda A, for a # 0 represent the same line. This
means that we carvaid the trivial solution by using the Rayleigh quotient again. So we
minimize

ATMA
ATA

which we knav it is minimized whenA is parallel to the eigeector with the smallest
eigervalue.

Q(a, b, c) = (3.6)

3.2. Alternativetothe Alternative

The abee cerivation leaves a wid in the the mind of the readd@ihe squared quanti-
ties, the sum of which we minimize,Jeamn immediate physical meaning. The question
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is then whether the solution we get is the same as the one we get from formulations that
minimize the sum of the squared distances of the points from the éngeTthis we

solve the problem once more by minimizing the squared distances, this time using Eg.
(3.4) to represent the line.

In this representation the distance of a pBiit[xo, Yol " from the line is

D = (x = Xo)* +(y = o) (3.7)
wherex andy are the coordinates of a point on the line, that is
ax+by+c=0. (3.8)

Furthermore this point is chosen such that the distBriseminimal. 1 find the distance
D we can sole E. (3.8) for one of the tavunknowns, sayx, substitute it in Eq. (3.7)
and then minimize the resulting expression to find

_ (axo + byy + C)2 (3.9)
= o )

D

hence the quantity we will minimize is

5-(ax, + by, + )

< AT MA AT MA
1b’ = i=1 = = .
Q(@b.c) 22+ 2 2+ 0 (3.10)
AT B 1
0 0

It is clear that the solution of Eq. (3.10) will differ from that of Eq. (3.6) in general. This

iS not an uncommon situation, whereotapproaches that ke geat appeal to intuition

give wo dfferent solutions. And although the latter approach that minimizes the sum of
squared distances appears to be more rigorous, it is not necessarily the “optimal” solu-
tion. Any claim to optimality depends on the underlying statistical model and unless we
know this model we cannot assert that a solution is optimal. Under some rather common
and very cowenient assumptions (independent, identically digted error with isotropic
variance), the optimal solution is indeed yaded by the minimization of the sum of
squared differences, but one can easily imagine situations that this is not the case.

4. Overdetermined Linear Systems

Quite often we hee b lve a ystem of linear equations where werdararny more
equations than we need but each one iswfdoality. If we discard the extra equations
and sole the linear system, then we might getIquality results. The solution is nothing
less than least squares.wioould it be. V& ae in the chapter about least squares.

As always we tale dl these equations, puverything in the left hand side, if it is not
there alreadysgquare them and add them togettMmimizing this sum is a simple issue
of differentiating with respect to the unknowns.
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Let, then,A be aM x N matrix whereM > N, b be aM-dimensional known ector
and x an N-dimensional vector of unkmms. The quest is to find the best possible solu-
tion to

Ax=Dhb

which we do by differentiating the squared normAaf- b, which is nothing more than
the sum of the squares of the elementévof b

0 _ Z_i T e
= (A=) —anAx b)"(Ax ~b) =

d

t
which we equate to zero and get

2%% (AX - b)= (Ax — b) = 2AT(Ax - b) = 2AT A- ATb

AT Ax = ATb
what statisticians call “normal equatioﬁs”

Matrix AT A has a host of nice properties. It is symmetric, it is nayathee cefinite
(and if invertible positve cefinite) and requires less storage than the original matrix
and more often than not we do net® need to compute matriA as an intermediate
result at all. If, at the set up stage of the problem tiws & of A and the corresponding
elementsh; of b (e.g. the individual equations and the correspondingvked are pro-
duced successily then AT Aand ATb can be computed by

ATA=3 AA
and

Ab=3 Ab

both of which can easily be done incrementally.

The definiteness oAT A males it easy to wert and ay matrix inversion method
performs better on this than other non-definite equations. And as if this was not enough,
there are methods best suited for such normal equations, most r@tajlgate Gradi-
ent, Cholesky Factorization, Sngular Value Decomposition, Successive Overrelaxation
etc. The wariety is stunning if not truly disheartening to anyone that hee heard ag
of these methods. But hold this pill. Rathewfef these are needed to sweviin Com-
puter Vision.

isince there is no mention in the literature of apnormal equations, one can speculate that normal here means orthogonal.
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5. Constrained Optimization

Quite often the solution we are seeking comes with strings attacleedo V@t just
want to minimize some functionubwe need to do so subject to certain constraintss Let’
see a realistic example.

Assume we are tracking the projectiond\bpoints in a sequence of images and we
want to compute the velocity of the pointse\Wnsult the visual motion literature and we
decide to use a certain functi@Qfu, v) that is minimized by the most probahleandv.

But we also knw that the scene is a rigid scene, whickegius a pwerful constraint,
since a rigid motion is a special kind of motion thategirise to specific patterns of
velocities for the projections of the points. So what weehia a mnimization tempered
by a constraint. These kinds of minimizations appear inyrdestiplines of Science and
Engineering as well Political Science, Economics etc.

The simplest way to do the minimization is to use the constraint te flwne or
more of the unknens, and eliminate it from the minimization. This is the method of
choice when such elimination is possible. Unfortunateiy not always.

5.1. Lagrange Multipliers

One of the most popularays to do constraint minimization is Lagrange Multipli-
ers. It works like magic, ones feels difficulty believing it when one sees it but it has been
used on an extreme range of things, from flying in the air to sorting your socks. It is the
Mary Poppins of methods.

Assume you want to minimiz@(p) wherep is a vector of dimensioK subject to a
constraintc(q) = 0 wherec(q) is a vector valued function of dimensidvi, M < K. It can
be shavn that this constrained minimization is eglent to performing unconstrained
minimization to the following expression

L(p,4) =Q(p) + A" c(p) (5.1)

whereA is a vector of dimensioM. We row haveK + M unknawvns, the ectorsp and A
and an equal number of equationse Wlve for the unknowns, thm away the vector A
and keepp. That's dl? Yes, that dl.

Yet, as opposed to Mary Poppins, the method is not just perfeceriyn\way. If we
eliminatedM unkowns by using the constrainfq) = 0 we would hare K — M left. Now
we hae K + M. Moreover, as we $all see latersome of the nicer properties that we
have been addicted to, are lost with Lagrange multipliers.

WEell, magic is not really magic, it is mathematics or science. At leass thatt
some scientists sayhen hav do the Lagrange Multipliers work? The exact proof &yw
beyond the scope of the text and the patience of the sane among its reaidarsitle
intuition can be helpful. W do his with a simple tw dimensional example where we
minimize a function of tw variablesx andy that is subject to an 1-D constraint xand
y sketched in Fig. 5.1. The constran{, y) = 0 is represented by the almost straight line
running from top left to about bottom right. The functiBrwe want to minimize is
depicted by a f& of its level crossings atS(x, y) =8,6,4,2 These lgel crossings are

Ch. 3. Sec. 4. Overdetermined Linear Systems 25



Spetsakis Computer Vision

usually closed cums. If the constraint was abseéhtvould achiee its minimum some-
where in the innerval, but since we are obliged to choose a solution that satisfies the
constraint, we hae © move p and down the constraint cuee(x, y,) = 0 until we find a
minimum. The minimum on the constraint ceris where this curg touches a el
crossing. In this example thisvi crossing is depicted by a dotted line. So the minimum
is achieed right at the point of contact.

Now that we knav that the minimum is achved at sich a point of contact all we
have o do is ask a mathematician to translate this to equations andampetent mathe-
matician will tell us that at such a point theotaurves hae gadients that are a scalar
multiples of each othetf we name this scalarattor-A, we will have little difficulty
arriving at Eq. (5.1).

5.2. Distance of a Point from aLine

We saw a poblem abwe that looled like a @nstrained minimization. ¥had to find
the minimum of Eq. (3.7) subject to the condition of Eq. (3.8), the condition, in other
words that the point belongs to the line. This is a simple problem and needs little help
from a dead French math guru, buteréheless we want to see if Mragrange was right.
We form our expression to minimize

Figure 5.1: The minimum without the constraint should be somewhere in the middle of the inner-
most contour, but with the constraint the minimum is where the constraint line and the
dotted line touch.
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L(X, Y, A) = (X = Xo)* + (Y = Yo)* +2A(ax + by +¢)

and tale derivatives with respect to the unknowns and Notice a small deviation from
the rules set out by Lagrange, namely we scaled the conditiah imgtead ofa, to save
a bt on typesetting. This has no othefeet. Sotaking the dexiatives with respect tax
andy we get

oL
— =2(x—X%y*+41a) =0
3x - 20X~ X +Aa)
oL
— =2(y—- Yot Ab) =0
dy Y- Yo )
from which we get
1
X=Xo_§/\a
1
y=Yo=5Ab.

If we take the denvative d L with respect tol we get the constraint, and if we substitute
x andy from abwe in it we can find that

S = axo+byg+c
C a2+

and from this we can easily dezithat the minimum distance is

_ (axg + byy + 0)2
C a2+ p?

precisely as before. Thus famagrange was right.

5.3. Application to Rayleigh Quotient

We a@an try the Lagrangian multipliers on something with known answer before we
jump head first to something with unkmo answerWhat better than the Rayleigh Quo-
tient we met a section ago.

T
R= quq

can be simplified a bit if we set= ﬁql
R=s'Cs (5.2)

and we can ne find s without nasty denominators and the furtifferentiation rules for
division. But from the aba definition we hae the constraint thatis a unit vectqror

1-¢=0. (5.3)

Since we hee a sngle constraintd is a scalarThe quantity to minimize is
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L(s,A) =s"Cs+ A(L-$). (5.4)

Differentiation with respect t@ will give ws the original constraint from Eq. (5.3) and
differentiation with respect to the original unknownill give

0
— L(s,A) =2Cs-22
P (s, 1) S S

which, if we equate to zero we get
Cs= s
or thats is an eigewector of matrixC. Almost done. W know that the solution is an

eigervector but there are as maof them as dimensions in matrx. So we eplaces
with eigervector g in Eq. (5.2)

R=e'Ce = A6l e = A
and we see that it is equal to the corresponding eayen So if we want to minimiz&

thens is the eigewector corresponding to the smallest engne. If we want to maxi-
mize R, to the largest eigemlue.

5.4. Overdetermined System with Additional Constraints

Let's look at an gerdetermined system of equations with additional constraings. W
are gven a gstem linear equations where the number of equations exceeds the number of
unknawvns, as is often the case in the presence of noise and uncedaihtye want to
solve it subject to a single (scalar) linear constraint. It should not be hard, and in a sense it
is not. But we would lik to avoid having to sole for some of the unkmens using the
linear constraint and substituting them in the expression to be minimized.

Let, then as beforeA be aM x N matrix whereM > N, b be aM-dimensional
known vector, x an N-dimensional vector of unknowns andan N-dimensional knawn
vector. We want to minimize

(Ax = by’
subject to the constraint
c'x=0
which we knav is minimized for the same value a&fas
L(x,1) = (Ax—b)? + Ac x

whereA is an scalar unknown. If we differentidt€x, 1) we get

‘;ix L(x,A) =2AT(Ax-b)+ Ac=0

and
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0

— L(x,A)=c"x=0

3, (xA)

which are linear equations and should be easy to solve. As wedkydfinite system of
linear equations can be written in matrix form so we combine tbhexquations together

to get

0 : o0 O O 0
RATA . cOOx0O RA™bO
0 OO0 0O-0 0
0 ' o0 O O 0 (5:5)
Oc¢™ . oO0)0 Oo O

but unfortunately the matrix in the left hand side is not pesitiefinite. This does not
mean that the system is unsolvable, just means that it is much. idredenoral of the
story: use Lagrange multipliers for analytic rather than numerical work, or do something
about your addiction to posig definiteness.
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Exercises
1. Find the extrema of the Rayleigh Quotient without using Lagrangian multipliers.

2. Let A be a symmetric matrix and its time dewative. Find the time dewative o one
of its eigewalue and eigevector pairs, saylg, €. No, no, no. That' s too hard. Shahat
the dervatives ae:

/io=egAeo

) N-1 ele;r .
=5 A

% igl)lo‘/‘i %

3. Letu; be 2-D flav vectors measured at locatiors In a four dimensional space form
the vector

|
Vi

OO

[u
= 0.
O

X0
and fit a plane through these points. Using this plane expresadlan #ine function of
X.

4. Letu[i], i =1..N, be a ector of unknowns and
: L dmec
Uglil =u)glil = 2 uli - jlglij]
1= min

be the cowolution of u with cornvolution kernel or templatg. Find theu that minimizes

iZ%%r[i, KJu[i] + Ali, KJug[i] +[i, k]g

5. Shav how to solve Ej. (5.5) using blockwise matrix varsion (aka imersion by
parts). Do you h& o invet ary non-positve matrix in the process?
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