
CHAPTER 3

Introduction to Statistical Estimation

1. The Simplest Kind of Statistics

Least Squares is the simplest and most intuitive kind of statistics and often the most
useful. The most straightforward application is as follows. We hav ea set of quantities that
we would like to be zero or as close to zero as possible and they all depend on a set of
unknowns. We take the squares of all these quantities, sum them up and then minimize
this sum with respect to the unknowns. There are many alternatives to least squares that
sometimes have interesting properties (most notably robustness to outliers) but least
squares is not only the simplest but is also the basis for most of the alternatives.

2. Point in the Middle

Consider the following very simple problem. We want to find a pointP and all we
have is a set of several approximations ofP which we callPi, i = 1. .N . If of course all
the Pis are identical the choice is easy. Otherwise we would like P to be as close to all of
them as possible. We form the sum of the squared differences

Q(P) =
N

i=1
Σ(Pi − P)2.

The standard way to minimizeQ is to take its derivatives with respect to the unknowns
and equate them to zero. Solving these equations will give us P, the vector of the
unknowns. In this very simple problem solving the equations is easy, but taking the
derivatives is slightly more complex. We examine two ways to take these derivatives.
One is scalar (element by element) derivatives and the other is vector derivatives.

2.1. Scalar Derivatives

Our unknowns are the elements of the vectorP

P =







p1

p2

. . .

pK







and our data are the vectorsPi
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Pi =







pi1

pi2

. . .

piK







So

Q(P) =
N

i=1
Σ

K

j=1
Σ(pij − p j)

2

and

∂Q(P)

∂ pk
=

N

i=1
Σ

K

j=1
Σ ∂

∂ pk
(pij − p j)

2 =

−2
N

i=1
Σ

K

j=1
Σ

∂ p j

∂ pk
(pij − p j) = −2

N

i=1
Σ

K

j=1
Σ δ jk(pij − p j)

whereδ ij is the Kronecker delta, e.g.δ ij = 0 iff i ≠ j andδ ii = 1 which of course makes
perfect sense: the derivative of an unknown with respect to itself is equal to one and the
derivative of an unknown with respect to a different unknown is zero. The delta affords us
some simplifications, so

∂Q(P)

∂ pk
= −2

N

i=1
Σ(pik − pk)

which if we equate to zero we get

pk =

N

i=1
Σ pik

N

e.g. every element of the unknown vector is the average of the corresponding elements of
the data.

2.2. Vector Derivatives

A more compact and mainly more elegant way of doing the same thing is taking
vector derivatives. Most of the rules of scalar derivatives apply, some with a small quirk.
Let’s start.

The notation

∂Q(P)

∂P

indicates a vector whose elements are the scalar derivatives of Q(P) with respect to the
corresponding element ofP (rememberQ is a scalar). Sometimes the “grad” notation is
used to indicate the same thing
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∂Q(P)

∂P
= ∇PQ(P)

where the subscriptP is the vector with respect to which the derivatives are taken. If it is
obvious what this vector is (in many physics problems it is always the position vector) it
is omitted. So

∂Q(P)

∂P
=

∂
∂P

N

i=1
Σ(Pi − P)2 =

N

i=1
Σ ∂

∂P


(Pi − P)T(Pi − P)


=

2
N

i=1
Σ 


∂

∂P
(Pi − P)T 


(Pi − P) = −2

N

i=1
Σ 


∂

∂P
PT 


(Pi − P)

where the derivative of Pi is zero, because it is constant.The derivative of a row vector
with with respect to a column vector is a matrix. Every row of this matrix is the derivative
of the row vector with the corresponding element of the column vector. In our case the
derivative of P with respect to itself is the identity matrix1. So

∂Q(P)

∂P
= 2

N

i=1
Σ1(Pi − P) = 2

N

i=1
Σ(Pi − P)

which if we equate to zero we get

(2.1)
P =

N

i=1
Σ Pi

N

which is essentially the same as before.

3. Line Fitting

In the problem above we had a collection of pointsPi and we found a pointP that is
closest to all of them, in the least squares sense. We can try something slightly more com-
plex now, like finding a linel that is closest to all pointsPi. Let line l be represented by
two vectors

l = (p, q)

where a pointPi belongs tol if f there is aλ such thatp + λq = Pi. Vector p is a point on
the line and vectorq is the direction of the line. There are other ways to represent a line
but this one suits, for the time, our purpose better. It works equally well for lines in the
plane or in a space of arbitrary number of dimensions. But most important, allows us to
explore a few interesting concepts.

Since we want to minimize the distance of the pointsPi from the linel we first need
to express this distance as a nice and easy to use expression. There are two equivalent
ways to define the point to line distance. The one is to define a normal line that goes
through the point and intersects the linel at a right angle and then measure the distance of
the point from the linel along the normal line. The second way is to find the distance of
the pointPi from a pointP′i that lies on the linel and then slide the pointP′i along the
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line l till this distance is minimized. This minimal distance is the one we want. Since we
have the machinery to minimize things we opt for the second approach. If you have a
hammer everything looks like a nail.

So the (squared) distanceD2
i of the pointPi from the linel is

D2
i =

λ
min(Pi − p − λq)2

but if we want to do anything useful with it we have to get rid of the min symbol by find-
ing the minimizing with respect toλ . As before we take derivatives

∂(Pi − p − λq)2

∂λ
= −2qT(Pi − p − λq)

and by equating it to zero we get

λ =
qT(Pi − p)

qT q

which gives us the expression for distance

D2
i = 


(Pi − p) −

qqT

qT q
(Pi − p)



2

which, striving for elegance we rewrite as

(3.1)D2
i = 


(1 −

qqT

qT q
)(Pi − p)



2

.

Now we hav ean expression for the distance of a pointPi from the linel and it is already
squared. To proceed with our least squares we sum up all these squared distances and find
the line parametersp andq that minimize this sum. We start by defining the sum

Q(p, q) =
N

i=1
Σ D2

i

and we take the derivatives first with respect top

∂Q(p, q)

∂ p
=

N

i=1
Σ ∂D2

i

∂ p
= −2

N

i=1
Σ ∂ pT

∂ p
(1 −

qqT

qT q
)(1 −

qqT

qT q
)(Pi − p) =

−2
N

i=1
Σ(1 −

qqT

qT q
)(1 −

qqT

qT q
)(Pi − p) =

−2(1 −
qqT

qT q
)(1 −

qqT

qT q
)

N

i=1
Σ(Pi − p)

which we can equate to zero. We can verify that
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(3.2)
p =

N

i=1
Σ Pi

N

satisfies the resulting equation, although it is not a unique solution. Sincep is just a point
on the line it is as good as any other point on the line. But we prefer the one given by Eq.
(3.2) because it is identical to the one given by Eq. (2.1) and does not containq.

On toq now. It appears that Eq. (3.1) is not elegant enough and we should improve
it. Consider the following well known identities for a vectorv

v2 = v ⋅ v = vT v = tr(vvT )

wheretr(. . .) is the trace operator (sum of diagonal elements).We are mainly interested
in the last version to apply it to Eq. (3.1) which becomes

Q(p, q) =
N

i=1
Σ tr




1 −

qqT

qT q


(Pi − p)(Pi − p)T 


1 −

qqT

qT q





and by noticing that the trace operator is linear and that the first and last parenthesized
quantities do not depend on the indexi we can rewrite it as

Q(p, q) = tr



1 −

qqT

qT q






N

i=1
Σ(Pi − p)(Pi − p)T 




1 −

qqT

qT q





=

N tr



1 −

qqT

qT q


C


1 −

qqT

qT q





= N tr



1 −

qqT

qT q




1 −

qqT

qT q


C



where

C =

N

i=1
Σ(Pi − p)(Pi − p)T

N
and we applied the following property of the trace for two matricesA andB of appropri-
ate dimensions

tr(AB) = tr(BA)

Then noticing that the product



1 −

qqT

qT q





1 −

qqT

qT q



=

1 +
qqT qqT

qT qqT q
−

qqT

qT q
−

qqT

qT q
=



1 −

qqT

qT q


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Q(p, q) = N tr

C


1 −

qqT

qT q





and by invoking the above property of the trace we get

(3.3)Q(p, q) = N tr(C) − N tr


qT Cq

q2



which is undoubtedly the most elegant of equations.

Matrix C is a constant so it does not affect the minimization which can be achieved
by maximizing the scalar

qT Cq

q2

which is just a Rayleigh Quotient and is maximized whenq is the eigenvector that corre-
sponds to the largest eigenvalue.

There are a few remarks that we can make on this result. First, we find the line
direction q without taking derivatives, just by using a canned theorem (we, in other
words, outsourced the derivatives to Dr. Rayleigh). Second the pointsPi can be of any
dimension: two dimensional points on the image plane, three dimensional points in the
real world or ten dimensional characters in a Douglas Adams novel. Third we can extend
the result to structures of higher dimensions than lines, like fitting a plane in a four
dimensional space, as we might need if we fit an affine flow to a set of image displace-
ment data. And finally, the same technique can be applied to find the principal direction
of any elongated object, even if we are not particularly interested in line fitting.

3.1. Alternative Way to Fit a Line

In a field as ancient as analytic geometry there are for sure many ways to represent a
line and about as many ways to fit a line. If we are interested in lines in the 2-D plane
only, the equation

(3.4)ax + by + c = 0

can represent a line. Parametersa, b and c are the parameters of the line and a point
P = [ x, y]T belongs to the line if and only if it satisfies Eq. (3.4). It is easy to see that if
we are given two mpints P1 = [ x1, y1]

T andP2 = [ x2, y2]
T we can form two equations

ax1 + by1 + c = 0

ax2 + by2 + c = 0

and solve for a, b and c. Wait a minute! We hav e two equations and three unknowns.
Before we jump into conclusions like “Eucleides was wrong”, it is worth noticing that the
two equations are homogeneous and we can recover the triplet of unknowns up to a scale
only. So we either setc to unity and solve for the other two, or, to avoid, in case the real
value of c is zero, falling into a singularity, which all respected authors of the blogo-
sphere assure us it is a black hole, we set the sum of the equares of the three unknowns to
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unity and solve three equations with three unknowns.

A far more interesting problem is to find the solution when we have many more
points Pi = [ xi, yi]

T , for i = 1. .N than the minimum two. The easiest and laziest thing to
do is just sum up the squares of Eq. (3.4) applied to all pointsPi

Q′(a, b, c) =
N

i=1
Σ(axi + byi + c)2.

It is not at all obvious what the physical meaning of the squared quantities is, but this
does not stop us. If we define

A =





a

b

c






and

xi =




xi

yi

1





we can rewrite

(3.5)
Q′(a, b, c) =

N

i=1
Σ 


AT xi




2

=
N

i=1
Σ AT xix

T
i A

AT 


N

i=1
Σ xix

T
i




A = AT MA

where

M =
N

i=1
Σ xix

T
i .

We notice immediatelly two things. The first is that Eq. (3.5) is homogeneous and so the
trivial solution (A = 0) minimizesQ. The second is thatA, the vector of the parameters of
the line is scale independent, that is,A andα A, for α ≠ 0 represent the same line. This
means that we can avoid the trivial solution by using the Rayleigh quotient again. So we
minimize

(3.6)Q(a, b, c) =
AT MA

AT A

which we know it is minimized whenA is parallel to the eigenvector with the smallest
eigenvalue.

3.2. Alternative to the Alternative

The above derivation leaves a void in the the mind of the reader. The squared quanti-
ties, the sum of which we minimize, have no immediate physical meaning. The question
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is then whether the solution we get is the same as the one we get from formulations that
minimize the sum of the squared distances of the points from the line. To see this we
solve the problem once more by minimizing the squared distances, this time using Eq.
(3.4) to represent the line.

In this representation the distance of a pointP0 = [ x0, y0]
T from the line is

(3.7)D = (x − x0)
2 + (y − y0)

2

wherex andy are the coordinates of a point on the line, that is

(3.8)ax + by + c = 0.

Furthermore this point is chosen such that the distanceD is minimal. To find the distance
D we can solve Eq. (3.8) for one of the two unknowns, sayx, substitute it in Eq. (3.7)
and then minimize the resulting expression to find

(3.9)D =
(ax0 + by0 + c)2

a2 + b2

hence the quantity we will minimize is

(3.10)
Q(a, b, c) =

N

i=1
Σ(axi + byi + c)2

a2 + b2
=

AT MA

a2 + b2
=

AT MA

AT






1

1

0






A

.

It is clear that the solution of Eq. (3.10) will differ from that of Eq. (3.6) in general. This
is not an uncommon situation, where two approaches that have great appeal to intuition
give two different solutions. And although the latter approach that minimizes the sum of
squared distances appears to be more rigorous, it is not necessarily the “optimal” solu-
tion. Any claim to optimality depends on the underlying statistical model and unless we
know this model we cannot assert that a solution is optimal. Under some rather common
and very convenient assumptions (independent, identically distributed error with isotropic
variance), the optimal solution is indeed provided by the minimization of the sum of
squared differences, but one can easily imagine situations that this is not the case.

4. Overdetermined Linear Systems

Quite often we have to solve a system of linear equations where we have many more
equations than we need but each one is of low quality. If we discard the extra equations
and solve the linear system, then we might get low quality results. The solution is nothing
less than least squares. How could it be. We are in the chapter about least squares.

As always we take all these equations, put everything in the left hand side, if it is not
there already, square them and add them together. Minimizing this sum is a simple issue
of differentiating with respect to the unknowns.

Ch. 3. Sec. 3. Line Fitting 23



Spetsakis Computer Vision

Let, then,A be aM × N matrix whereM > N , b be aM-dimensional known vector
and x an N -dimensional vector of unknowns. The quest is to find the best possible solu-
tion to

Ax = b

which we do by differentiating the squared norm ofAx − b, which is nothing more than
the sum of the squares of the elements ofAx − b

∂
∂x

(Ax − b)2 =
∂

∂x


(Ax − b)T(Ax − b)


=

2


∂
∂x

(Ax − b)


T

(Ax − b) = 2AT(Ax − b) = 2AT A − AT b

which we equate to zero and get

AT Ax = AT b

what statisticians call “normal equations”‡.

Matrix AT A has a host of nice properties. It is symmetric, it is non-negative definite
(and if invertible positive definite) and requires less storage than the original matrixA
and more often than not we do not even need to compute matrixA as an intermediate
result at all. If, at the set up stage of the problem the rows Ai of A and the corresponding
elementsbi of b (e.g. the individual equations and the corresponding knowns) are pro-
duced successively then AT A andAT b can be computed by

AT A =
i
Σ Ai AT

i

and

AT b =
i
Σ Aibi

both of which can easily be done incrementally.

The definiteness ofAT A makes it easy to invert and any matrix inversion method
performs better on this than other non-definite equations. And as if this was not enough,
there are methods best suited for such normal equations, most notablyConjugate Gradi-
ent, Cholesky Factorization, Singular Value Decomposition, Successive Overrelaxation
etc. The variety is stunning if not truly disheartening to anyone that has never heard any
of these methods. But hold this pill. Rather few of these are needed to survive in Com-
puter Vision.

‡since there is no mention in the literature of any abnormal equations, one can speculate that normal here means orthogonal.
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5. Constrained Optimization

Quite often the solution we are seeking comes with strings attached. We do not just
want to minimize some function, but we need to do so subject to certain constraints. Let’s
see a realistic example.

Assume we are tracking the projections ofN points in a sequence of images and we
want to compute the velocity of the points. We consult the visual motion literature and we
decide to use a certain functionQ(u, v) that is minimized by the most probableu andv.
But we also know that the scene is a rigid scene, which gives us a powerful constraint,
since a rigid motion is a special kind of motion that gives rise to specific patterns of
velocities for the projections of the points. So what we have is a minimization tempered
by a constraint. These kinds of minimizations appear in many disciplines of Science and
Engineering as well Political Science, Economics etc.

The simplest way to do the minimization is to use the constraint to solve for one or
more of the unknowns, and eliminate it from the minimization. This is the method of
choice when such elimination is possible. Unfortunately, it is not always.

5.1. Lagrange Multipliers

One of the most popular ways to do constraint minimization is Lagrange Multipli-
ers. It works like magic, ones feels difficulty believing it when one sees it but it has been
used on an extreme range of things, from flying in the air to sorting your socks. It is the
Mary Poppins of methods.

Assume you want to minimizeQ(p) wherep is a vector of dimensionK subject to a
constraintc(q) = 0 wherec(q) is a vector valued function of dimensionM , M < K . It can
be shown that this constrained minimization is equivalent to performing unconstrained
minimization to the following expression

(5.1)L(p, λ) = Q(p) + λT c(p)

whereλ is a vector of dimensionM . We now hav eK + M unknowns, the vectorsp andλ
and an equal number of equations. We solve for the unknowns, throw away the vectorλ
and keepp. That’s all? Yes, that’s all.

Yet, as opposed to Mary Poppins, the method is not just perfect in every way. If we
eliminatedM unkowns by using the constraintc(q) = 0 we would have K − M left. Now
we have K + M . Moreover, as we shall see later, some of the nicer properties that we
have been addicted to, are lost with Lagrange multipliers.

Well, magic is not really magic, it is mathematics or science. At least that’s what
some scientists say. Then how do the Lagrange Multipliers work? The exact proof is way
beyond the scope of the text and the patience of the sane among its readers, but a little
intuition can be helpful. We do this with a simple two dimensional example where we
minimize a function of two variablesx andy that is subject to an 1-D constraint onx and
y sketched in Fig. 5.1. The constraintc(x, y) = 0 is represented by the almost straight line
running from top left to about bottom right. The functionS we want to minimize is
depicted by a few of its level crossings atS(x, y) = 8, 6,4, 2. These level crossings are
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usually closed curves. If the constraint was absentS would achieve its minimum some-
where in the inner oval, but since we are obliged to choose a solution that satisfies the
constraint, we have to move up and down the constraint curve c(x, y, ) = 0 until we find a
minimum. The minimum on the constraint curve is where this curve touches a level
crossing. In this example this level crossing is depicted by a dotted line. So the minimum
is achieved right at the point of contact.

Now that we know that the minimum is achieved at such a point of contact all we
have to do is ask a mathematician to translate this to equations and any competent mathe-
matician will tell us that at such a point the two curves have gradients that are a scalar
multiples of each other. If we name this scalar factor −λ , we will have little difficulty
arriving at Eq. (5.1).

5.2. Distance of a Point from a Line

We saw a problem above that looked like a constrained minimization. We had to find
the minimum of Eq. (3.7) subject to the condition of Eq. (3.8), the condition, in other
words that the point belongs to the line. This is a simple problem and needs little help
from a dead French math guru, but nevertheless we want to see if Mr. Lagrange was right.
We form our expression to minimize

8

6

4

2

5.2

C

Figure 5.1: The minimum without the constraint should be somewhere in the middle of the inner-
most contour, but with the constraint the minimum is where the constraint line and the
dotted line touch.
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L(x, y, λ) = (x − x0)
2 + (y − y0)

2 + 2λ(ax + by + c)

and take derivatives with respect to the unknowns andλ . Notice a small deviation from
the rules set out by Lagrange, namely we scaled the condition by2λ instead ofλ , to sav e
a bit on typesetting. This has no other effect. Sotaking the derivatives with respect tox
andy we get

∂L

∂x
= 2(x − x0 + λ a) = 0

∂L

∂y
= 2(y − y0 + λb) = 0

from which we get

x = x0 −
1

2
λ a

y = y0 −
1

2
λb.

If we take the derivative of L with respect toλ we get the constraint, and if we substitute
x andy from above in it we can find that

λ =
ax0 + by0 + c

a2 + b2

and from this we can easily derive that the minimum distance is

D =
(ax0 + by0 + c)2

a2 + b2

precisely as before. Thus far, Lagrange was right.

5.3. Application to Rayleigh Quotient

We can try the Lagrangian multipliers on something with known answer before we
jump head first to something with unknown answer. What better than the Rayleigh Quo-
tient we met a section ago.

R =
qT Cq

q2

can be simplified a bit if we sets =
q

|q|

(5.2)R = sT Cs

and we can now find s without nasty denominators and the funny differentiation rules for
division. But from the above definition we have the constraint thats is a unit vector, or

(5.3)1 − s2 = 0.

Since we have a single constraint,λ is a scalar. The quantity to minimize is
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(5.4)L(s, λ) = sT Cs + λ(1 − s2).

Differentiation with respect toλ will give us the original constraint from Eq. (5.3) and
differentiation with respect to the original unknownsq will give

∂
∂s

L(s, λ) = 2Cs − 2λ s

which, if we equate to zero we get

Cs = λ s

or that s is an eigenvector of matrixC. Almost done. We know that the solution is an
eigenvector but there are as many of them as dimensions in matrixC. So we replaces
with eigenvector ei in Eq. (5.2)

R = eT
i Cei = λ ie

T
i ei = λ i

and we see that it is equal to the corresponding eigenvalue. So if we want to minimizeR
then s is the eigenvector corresponding to the smallest eigenvalue. If we want to maxi-
mize R, to the largest eigenvalue.

5.4. Overdetermined System with Additional Constraints

Let’s look at an overdetermined system of equations with additional constraints. We
are given a system linear equations where the number of equations exceeds the number of
unknowns, as is often the case in the presence of noise and uncertainty, and we want to
solve it subject to a single (scalar) linear constraint. It should not be hard, and in a sense it
is not. But we would like to avoid having to solve for some of the unknowns using the
linear constraint and substituting them in the expression to be minimized.

Let, then as before,A be a M × N matrix whereM > N , b be a M-dimensional
known vector, x an N -dimensional vector of unknowns andc an N -dimensional known
vector. We want to minimize

(Ax − b)2

subject to the constraint

cT x = 0

which we know is minimized for the same value ofx as

L(x, λ) = (Ax − b)2 + λcT x

whereλ is an scalar unknown. If we differentiateL(x, λ) we get

∂
∂x

L(x, λ) = 2AT(Ax − b) + λc = 0

and
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∂
∂λ

L(x, λ) = cT x = 0

which are linear equations and should be easy to solve. As we know any finite system of
linear equations can be written in matrix form so we combine the two equations together
to get

(5.5)








2AT A

. . .

cT

.

.

.

.

.

c

. .

0















x

. .

λ








=








2AT b

. . .

0








but unfortunately the matrix in the left hand side is not positive definite. This does not
mean that the system is unsolvable, just means that it is much harder. The moral of the
story: use Lagrange multipliers for analytic rather than numerical work, or do something
about your addiction to positive definiteness.
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Exercises

1. Find the extrema of the Rayleigh Quotient without using Lagrangian multipliers.

2. Let A be a symmetric matrix anḋA its time derivative. Find the time derivative of one
of its eigenvalue and eigenvector pairs, sayλ0, e0. No, no, no. That’ s too hard. Show that
the derivatives are:

λ̇0 = eT
0 Ȧe0

ė0 =
N−1

i=1
Σ eie

T
i

λ0 − λ i
Ȧe0

3. Let ui be 2-D flow vectors measured at locationsxi. In a four dimensional space form
the vector

vi =





ui

. . .

xi






and fit a plane through these points. Using this plane express flow as an affine function of
x.

4. Letu[i], i = 1. .N , be a vector of unknowns and

ug[i] = u(* )g[i] =
jmax

j= jmin

Σ u[i − j]g[ j]

be the convolution of u with convolution kernel or templateg. Find theu that minimizes

i
Σ

k
Σ 


α[i, k]u[i] + β[i, k]ug[i] + c[i, k]



2

5. Show how to solve Eq. (5.5) using blockwise matrix inversion (aka inversion by
parts). Do you have to inv ert any non-positive matrix in the process?
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