CSE4421: Lab 3

Burton Ma

Posted: Wed Feb 06, 2013 Due: Before 11:59PM Sun Feb 10, 2013

Note: I will check your answers for steps 1 and 3 if you ask.

- 1. Derive the table of Denavit-Hartenberg (DH) parameters for the A150 robot using the frame placements shown in Figure 1. Links 1–3 all have a length of 10 inches. Link 4 can be treated as a link of length 0 inches. The distance between o_4 and o_5 is 2 inches.
- 2. Implement a Matlab function that computes the Denavit-Hartenberg transformation matrix given vectors of DH values a, α , d, and θ . The function signature should be:

function T = dh(a, alpha, d, theta)

You can check that your function gives results that are consistent with the A150 simulator by plugging in appropriate DH values for the A150 arm.

- 3. Derive the analytic form of the matrix T_5^3 ; i.e., derive the elements of the 4×4 matrix.
- 4. Solve the inverse kinematics problem for the wrist; i.e., given T_5^3 solve for the values of θ_4 and θ_5 . Implement a Matlab function that computes the inverse kinematics of the wrist. The function signature should be:

function theta45 = invwrist(T35)

where theta45 is the vector $[\theta_4 \ \theta_5]$ and T35 is the matrix T_5^3 .

5. Implement a Matlab function that finds the location of o_c^0 , the wrist center relative to frame $\{0\}$, given T_5^0 , the pose of frame $\{5\}$ relative to frame $\{0\}$. The function signature should be:

function oc = wristcenter(T05)

where oc is the wrist center location o_c^0 and T05 is the matrix T_5^0 .

Submit your Matlab files using the command

submit 4421 L3 dh.m invwrist.m wristcenter.m

Figure 1: Denavit-Hartenberg frame placement for the A150 and A255 robots.

Joint variable	Range
$ heta_1$	-175° to 175°
$ heta_2$	0° to 110°
$ heta_3$	-130° to 0°
$ heta_4$	-110° to 110°
$ heta_5$	-180° to 180°

Table 1: The joint variable ranges in the Denavit-Hartenberg convention.