CSE 4215/5431: Mobile Communications

Winter 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/4215

Some slides are adapted from the Schiller book website

3/12/2013

IEEE 802.15 – future developments 3

- 802.15.4: Low-Rate, Very Low-Power
 - Low data rate solution with multi-month to multi-year battery life and very low complexity
 - Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation
 - Data rates of 20-250 kbit/s, latency down to 15 ms
 - Master-Slave or Peer-to-Peer operation
 - Up to 254 devices or 64516 simpler nodes
 - Support for critical latency devices, such as joysticks
 - CSMA/CA channel access (data centric), slotted (beacon) or unslotted
 - Automatic network establishment by the PAN coordinator
 - Dynamic device addressing, flexible addressing format
 - Full handshake-based protocol for transfer reliability
 - Power management to ensure low power consumption
 - 16 channels in the 2.4 GHz ISM band, 10 channels in the 915 MHz US ISM band and one channel in the European 868 MHz band
- Basis of the ZigBee technology www.zigbee.org

ZigBee

- Relation to 802.15.4 similar to Bluetooth / 802.15.1
- Pushed by Chipcon (now TI), ember, freescale (Motorola), Honeywell, Mitsubishi, Motorola, Philips, Samsung...
- More than 260 members
 - about 15 promoters, 133 participants, 111 adopters
 - must be member to commercially use ZigBee spec
- ZigBee platforms comprise
 - IEEE 802.15.4 for layers 1 and 2
 - ZigBee protocol stack up to the applications

IEEE 802.15 – future developments 4

- 802.15.4a:
 - Alternative PHY with lower data rate as extension to 802.15.4
 - Properties: precise localization (< 1m precision), extremely low power consumption, longer range
 - Two PHY alternatives
 - UWB (Ultra Wideband): ultra short pulses, communication and localization
 - CSS (Chirp Spread Spectrum): communication only
- 802.15.4b, c, d, e, f, g:
 - Extensions, corrections, and clarifications regarding 802.15.4
 - Usage of new bands, more flexible security mechanisms
 - RFID, smart utility neighborhood (high scalability)
- 802.15.5: Mesh Networking
 - Partial meshes, full meshes
 - Range extension, more robustness, longer battery live
- 802.15.6: Body Area Networks
 - Low power networks e.g. for medical or entertainment use
- 802.15.7: Visible Light Communication
- Not all these working groups really create a standard, not all standards will be found in products later ...

Other IEEE standards for mobile communications

- IEEE 802.16: Broadband Wireless Access / WirelessMAN / WiMax
 - Wireless distribution system, e.g., for the last mile, alternative to DSL
 - 75 Mbit/s up to 50 km LOS, up to 10 km NLOS; 2-66 GHz band
 - Initial standards without roaming or mobility support
 - 802.16e adds mobility support, allows for roaming at 150 km/h
- IEEE 802.20: Mobile Broadband Wireless Access (MBWA)
 - Licensed bands < 3.5 GHz, optimized for IP traffic
 - Peak rate > 1 Mbit/s per user
 - Different mobility classes up to 250 km/h and ranges up to 15 km
 - Relation to 802.16e unclear
- IEEE 802.21: Media Independent Handover Interoperability
 - Standardize handover between different 802.x and/or non 802 networks
- IEEE 802.22: Wireless Regional Area Networks (WRAN)
 - Radio-based PHY/MAC for use by license-exempt devices on a noninterfering basis in spectrum that is allocated to the TV Broadcast Service

3/12/2013

RF Controllers – ISM bands

- Data rate
 - Typically up to 115 kbit/s (serial interface)
- Transmission range
 - 5-100 m, depending on power (typically 10-500 mW)
- Frequency
 - Typ. 27 (EU, US), 315 (US),
 418 (EU), 426 (Japan), 433
 (EU), 868 (EU), 915 (US) MHz
 (depending on regulations)
- Security
 - Some products with added processors
- Cost
 - Cheap
 - Availability: Many products, vendors

- Connection set-up time
 - N/A
- Quality of Service
 - none
- Manageability
 - Very simple, same as serial interface
- Special Advantages/Disadvantages
 - Advantage: very low cost, large experience, high volume available
 - Disadvantage: no QoS, crowded ISM bands (particularly 27 and 433 MHz), typically no Medium Access Control, 418 MHz experiences interference with TETRA

RFID – Radio Frequency Identification (1)

- Data rate
 - Transmission of ID only (e.g., 48 bit, 64kbit, 1 Mbit)
 - 9.6 115 kbit/s
- Transmission range
 - Passive: up to 3 m
 - Active: up to 30-100 m
 - Simultaneous detection of up to, e.g., 256 tags, scanning of, e.g., 40 tags/s
- Frequency
 - 125 kHz, 13.56 MHz, 433 MHz, 2.4 GHz, 5.8 GHz , others
- Security
 - Application dependent, typically no crypto on RFID device
- Cost
 - Very cheap tags, down to 1€ (passive)
- Availability
 - Many products, many vendors

RFID – Radio Frequency Identification (2)

Connection set-up time

- Depends on product/medium access scheme (typ. 2 ms per device)
- Quality of Service
 - none
- Manageability
 - Very simple, same as serial interface
- Special Advantages/Disadvantages
 - Advantage: extremely low cost, large experience, high volume available, no power for passive RFIDs needed, large variety of products, relative speeds up to 300 km/h, broad temp. range
 - Disadvantage: no QoS, simple denial of service, crowded ISM bands, typically one-way (activation/ transmission of ID)

RFID – (3)

• Function

- Standard: In response to a radio interrogation signal from a reader (base station) the RFID tags transmit their ID
- Enhanced: additionally data can be sent to the tags, different media access schemes (collision avoidance)
- Features
 - No line-of sight required (compared to, e.g., laser scanners)
 - RFID tags withstand difficult environmental conditions (sunlight, cold, frost, dirt etc.)
 - Products available with read/write memory, smart-card capabilities
- Categories
 - Passive RFID: operating power comes from the reader over the air which is feasible up to distances of 3 m, low price (1€)
 - Active RFID: battery powered, distances up to 100 m

RFID – (4)

• Applications

- Total asset visibility: tracking of goods during manufacturing, localization of pallets, goods etc.
- Loyalty cards: customers use RFID tags for payment at, e.g., gas stations, collection of buying patterns
- Automated toll collection: RFIDs mounted in windshields allow commuters to drive through toll plazas without stopping
- Others: access control, animal identification, tracking of hazardous material, inventory control, warehouse management, ...
- Local Positioning Systems
 - GPS useless indoors or underground, problematic in cities with high buildings
 - RFID tags transmit signals, receivers estimate the tag location by measuring the signal's time of flight

3/12/2013

RFID – (5)

- Security
 - Denial-of-Service attacks are always possible
 - Interference of the wireless transmission, shielding of transceivers
 - IDs via manufacturing or one time programming
 - Key exchange via, e.g., RSA possible, encryption via, e.g., AES
- Future Trends
 - RTLS: Real-Time Locating System big efforts to make total asset visibility come true
 - Integration of RFID technology into the manufacturing, distribution and logistics chain
 - Creation of "electronic manifests" at item or package level (embedded inexpensive passive RFID tags)
 - 3D tracking of children, patients

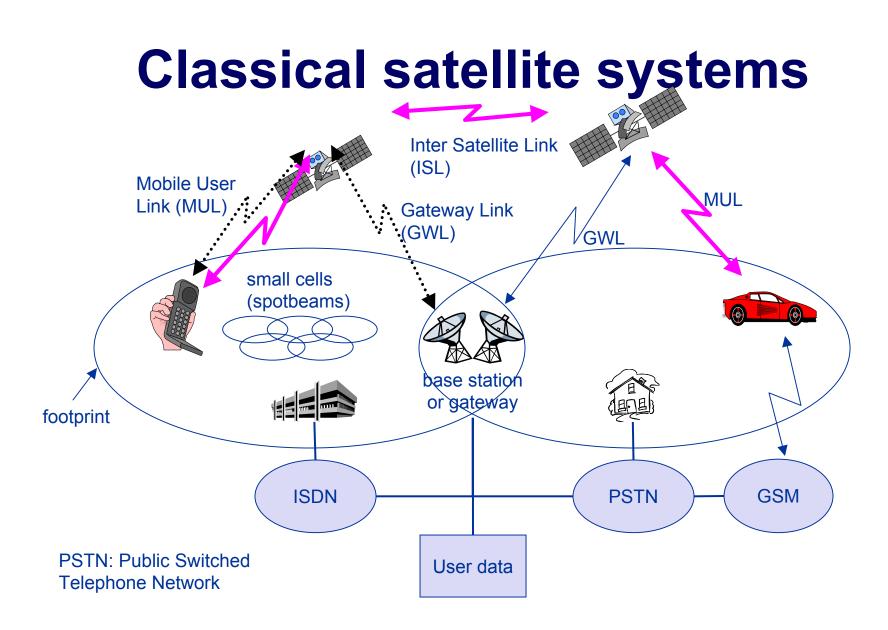
ISM band interference

- Many sources of interference
 - Microwave ovens, microwave lighting
 - 802.11, 802.11b, 802.11g, 802.15, ...
 - Even analog TV transmission, surveillance
 - Unlicensed metropolitan area networks

- Levels of interference
 - Physical layer: interference acts like noise
 - Spread spectrum tries to minimize this
 - FEC/interleaving tries to correct
 - MAC layer: algorithms not harmonized
 - E.g., Bluetooth might confuse 802.11

© Fusion Lighting, Inc., now used by LG as Plasma Lighting System

Next

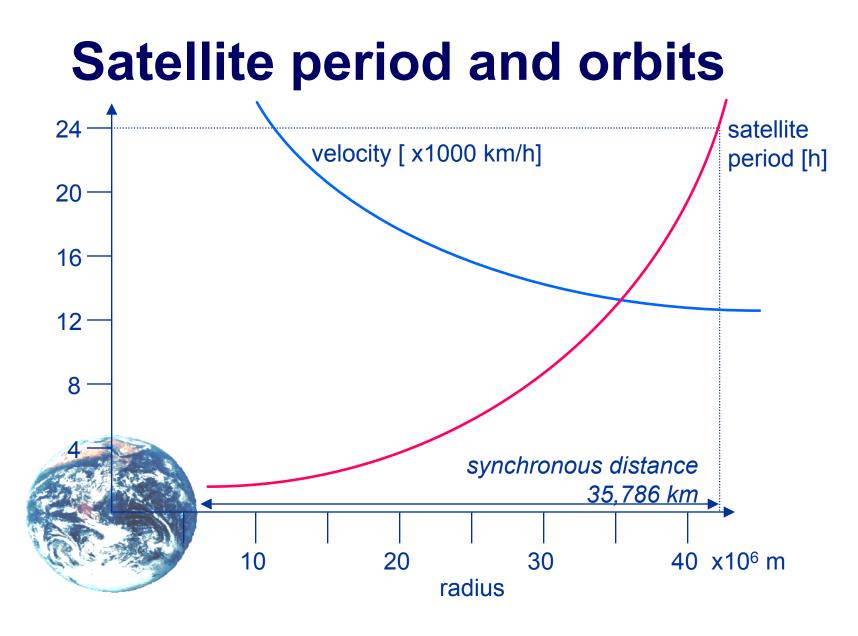

- Ch 5 (Schiller): Satellite Systems
- History
- Basics
- Localization
- Handover
- Routing
- Systems

History of satellite communication

- 1945 Arthur C. Clarke publishes an essay about "Extra Terrestrial Relays"
- 1957 first satellite SPUTNIK
- 1960 first reflecting communication satellite ECHO
- 1963 first geostationary satellite SYNCOM
- 1965 first commercial geostationary satellite Satellite "Early Bird" (INTELSAT I): 240 duplex telephone channels or 1 TV channel, 1.5 years lifetime
- 1976 three MARISAT satellites for maritime communication
- 1982 first mobile satellite telephone system INMARSAT-A
- 1988 first satellite system for mobile phones and data communication INMARSAT-C
- 1993 first digital satellite telephone system
- 1998 global satellite systems for small mobile phones

Applications

- Traditionally
 - weather satellites
 - radio and TV broadcast satellites
 - military satellites
 - satellites for navigation and localization (e.g., GPS)
- Telecommunication
 - global telephone connections replaced by fiber optics
 - backbone for global networks
 - connections for communication in remote places or underdeveloped areas
 - global mobile communication
- satellite systems to extend cellular phone systems (e.g., GSM or AMPS)

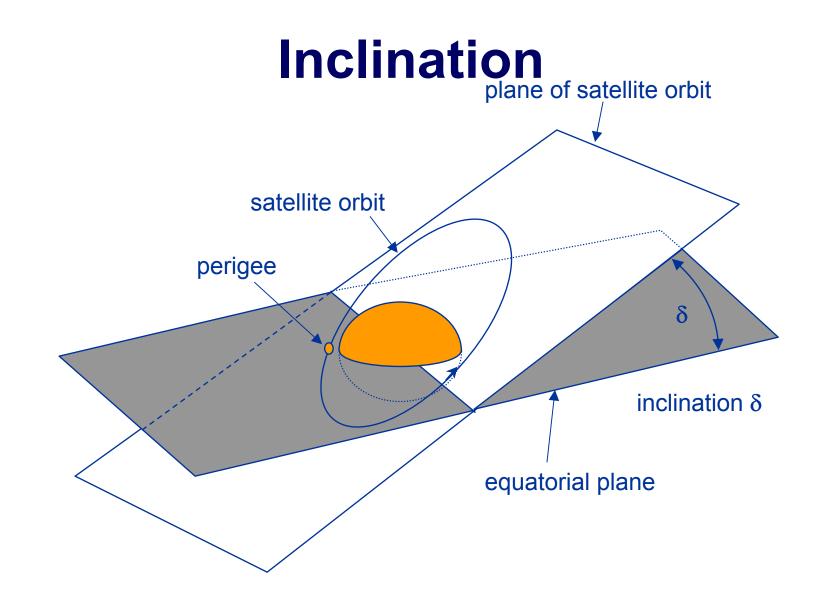


Basics

- Satellites in circular orbits
 - attractive force $F_g = m g (R/r)^2$
 - centrifugal force $F_c = m r \omega^2$
 - m: mass of the satellite
 - R: radius of the earth (R = 6370 km)
 - r: distance to the center of the earth
 - g: acceleration of gravity (g = 9.81 m/s²)
 - ω : angular velocity ($\omega = 2 \pi$ f, f: rotation frequency)
- Stable orbit

 $-F_a = F_c$

$$r = \sqrt[3]{\frac{gR^2}{(2\pi f)^2}}$$



Basics

- elliptical or circular orbits
- complete rotation time depends on distance satelliteearth
- inclination: angle between orbit and equator
- elevation: angle between satellite and horizon
- LOS (Line of Sight) to the satellite necessary for connection

→ high elevation needed, less absorption due to e.g. buildings

- Uplink: connection base station satellite
- Downlink: connection satellite base station
- typically separated frequencies for uplink and downlink
 - transponder used for sending/receiving and shifting of frequencies
 - transparent transponder: only shift of frequencies
- regenerative transponder: additionally signal regeneration
 3/12/2013 CSE 4215, Winter 2013

Elevation

Elevation:

angle $\boldsymbol{\epsilon}$ between center of satellite beam and surface

footprint

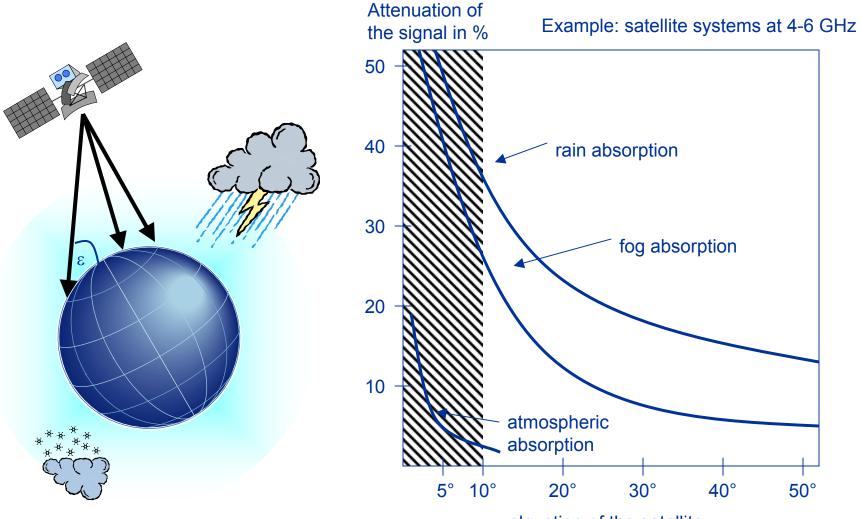
minimal elevation: elevation needed at least

to communicate with the satellite

3

Link budget of satellites

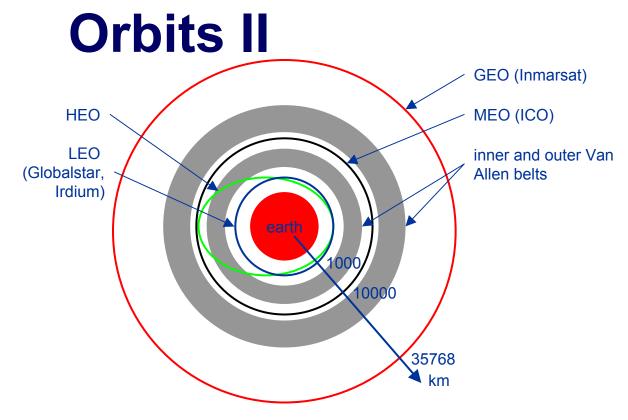
Parameters like attenuation or received power determined by four parameters:


- sending power
- gain of sending antenna
- distance between sender and receiver
- gain of receiving antenna
 Problems
 - varying strength of received signal due to multipath propagation
- interruptions due to shadowing of signal (no LOS)
- Possible solutions
- Link Margin to eliminate variations in signal strength
- satellite diversity (usage of several visible satellites at the same time) helps to use less sending power

٠

L: Loss f: carrier frequency r: distance c: speed of light

 $L = \left(\frac{4\pi rf}{c}\right)^2$


Atmospheric attenuation

elevation of the satellite

Orbits I

- Four different types of satellite orbits can be identified depending on the shape and diameter of the orbit:
- GEO: geostationary orbit, ca. 36000 km above earth surface
- LEO (Low Earth Orbit): ca. 500 1500 km
- MEO (Medium Earth Orbit) or ICO (Intermediate Circular Orbit): ca. 6000 - 20000 km
- HEO (Highly Elliptical Orbit) elliptical orbits

Van-Allen-Belts: ionized particles 2000 - 6000 km and 15000 - 30000 km above earth surface

Geostationary satellites

- Orbit 35,786 km distance to earth surface, orbit in equatorial plane (inclination 0°)
- Substitution construction construction
 Complete rotation exactly one day, satellite is synchronous to earth rotation
- fix antenna positions, no adjusting necessary
- satellites typically have a large footprint (up to 34% of earth surface!), therefore difficult to reuse frequencies
- bad elevations in areas with latitude above 60° due to fixed position above the equator
- high transmit power needed
- high latency due to long distance (ca. 275 ms)
- not useful for global coverage for small mobile phones and data transmission, typically used for radio and TV transmission

LEO systems

- Orbit ca. 500 1500 km above earth surface
- visibility of a satellite ca. 10 40 minutes
- global radio coverage possible
- latency comparable with terrestrial long distance connections, ca. 5 - 10 ms
- smaller footprints, better frequency reuse
- but now handover necessary from one satellite to another
- many satellites necessary for global coverage
- more complex systems due to moving satellites
- Examples:

3/12/2013

- Iridium (start 1998, 66 satellites)
 - Bankruptcy in 2000, deal with US DoD (free use, saving from "deorbiting")
- Globalstar (start 1999, 48 satellites)
 - Not many customers (2001: 44000), low stand-by times for mobiles

MEO systems

- Orbit ca. 5000 12000 km above earth surface
- comparison with LEO systems:
- slower moving satellites
- less satellites needed
- simpler system design
- for many connections no hand-over needed
- higher latency, ca. 70 80 ms
- higher sending power needed
- special antennas for small footprints needed
- Example:
- ICO (Intermediate Circular Orbit, Inmarsat) start ca. 2000
 - Bankruptcy, planned joint ventures with Teledesic, Ellipso cancelled again, start planned for 2003

Routing

- One solution: inter satellite links (ISL)
- reduced number of gateways needed
- forward connections or data packets within the satellite network as long as possible
- only one uplink and one downlink per direction needed for the connection of two mobile phones
- Problems:
- more complex focusing of antennas between satellites
- high system complexity due to moving routers
- higher fuel consumption
- thus shorter lifetime
- Iridium and Teledesic planned with ISL
- Other systems use gateways and additionally terrestrial networks

Localization of mobile stations

- Mechanisms similar to GSM
- Gateways maintain registers with user data
 - HLR (Home Location Register): static user data
 - VLR (Visitor Location Register): (last known) location of the mobile station
 - SUMR (Satellite User Mapping Register):
 - satellite assigned to a mobile station
 - positions of all satellites
- Registration of mobile stations
 - Localization of the mobile station via the satellite's position
 - requesting user data from HLR
 - updating VLR and SUMR
- Calling a mobile station
 - localization using HLR/VLR similar to GSM
 - connection setup using the appropriate satellite

3/12/2013

Handover in satellite systems

- Several additional situations for handover in satellite systems compared to cellular terrestrial mobile phone networks caused by the movement of the satellites
 - Intra satellite handover
 - handover from one spot beam to another
 - mobile station still in the footprint of the satellite, but in another cell
 - Inter satellite handover
 - handover from one satellite to another satellite
 - mobile station leaves the footprint of one satellite
 - Gateway handover
 - Handover from one gateway to another
 - mobile station still in the footprint of a satellite, but gateway leaves the footprint
 - Inter system handover
 - Handover from the satellite network to a terrestrial cellular network
 - mobile station can reach a terrestrial network again which might be cheaper, has a lower latency etc.

Overview of LEO/MEO systems

	Iridium	Globalstar	ICO	Teledesic
# satellites	66 + 6	48 + 4	10 + 2	288
altitude	780	1414	10390	ca. 700
(km)				
coverage	global	±70° latitude	global	global
min.	8°	20°	20°	40°
elevation				
frequencies	1.6 MS	1.6 MS ↑	2 MS ↑	19↓
[GHz	29.2 1	2.5 MS ↓	2.2 MS ↓	28.8 ↑
(circa)]	19.5↓	5.1 ↑	5.2 ↑	62 ISL
	23.3 ISL	6.9↓	7↓	
access	FDMA/TDMA	CDMA	FDMA/TDMA	FDMA/TDMA
method				
ISL	yes	no	no	yes
bit rate	2.4 kbit/s	9.6 kbit/s	4.8 kbit/s	64 Mbit/s \downarrow
				2/64 Mbit/s ↑
# channels	4000	2700	4500	2500
Lifetime	5-8	7.5	12	10
[years]				
cost	4.4 B\$	2.9 B\$	4.5 B\$	9 B\$
estimation				