CSE 4215/5431: Mobile Communications

Winter 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/4215

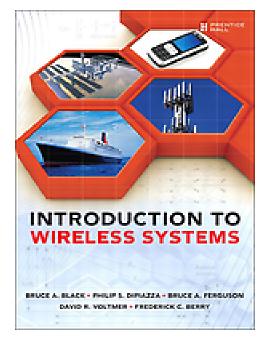
1/8/2013

My research

- Bioinformatics
- Computer Networks
 - Problems in wired networks
 - Wireless Sensor networks
 - MAC protocols
 - Localization
 - Topology management
 - Battery modeling

Administrivia

Lectures: Tue-Thu 5:30 - 7:00 pm CB 122


Office hours: Mon 4-6 pm, Tue 3-4 pm, or by appointment.

TA: TBA.

http://www.cse.yorku.ca/course/4215

Webpage: All announcements, handouts will be published on the webpage -- check often for updates)

Textbook:

Introduction to Wireless Systems Bruce A. Black, Philip S. DiPiazza, Bruce A. Ferguson, David R. Voltmer, Frederick C. Berry, Prentice Hall; First edition (2008), ISBN: 0132782243

Administrivia – contd.

Described in more detail on webpage Grading (4215 only): Midterm : 20% Final: 45% Homework : 25% Term paper: 10%

Grades: will be on *ePost*.

Term paper details are on the webpage.

Course objectives

- Learn about theoretical and practical aspects of Mobile Communications
- Study similarities and differences with wired networks
- Study solutions to problems specific to Mobile Networks

What I expect from you

- Familiarity with the TCP/IP architecture and mobile communications
- Active interest in your project and assignments
- Willingness to learn about course topics, inside and outside the class

Several of the following slides are adapted from slides by the author of the Schiller text.

Mobile communication

- Two aspects of mobility:
 - user mobility: users communicate (wireless) "anytime, anywhere, with anyone"
 - device portability: devices can be connected anytime, anywhere to the network
- Wireless vs. mobile

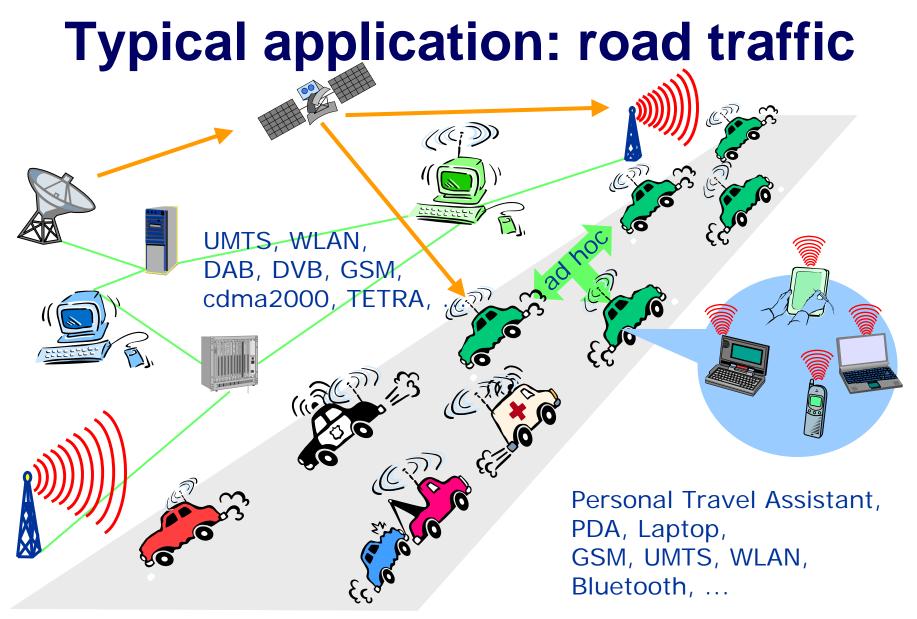
Examples

- stationary computer
- ✗ ✓ notebook in a hotel
 - wireless LANs in historic buildings
 - Personal Digital Assistant (PDA)

X

Mobile communication - 2

The demand for mobile communication creates the need for integration of wireless networks into existing fixed networks:


- local area networks: standardization of IEEE 802.11
- Internet: Mobile IP extension of the internet protocol IP
- wide area networks: e.g., internetworking of GSM and ISDN, VoIP over WLAN and POTS

Applications I

- Vehicles
 - transmission of news, road condition, weather, music via DAB/DVB-T
 - personal communication using GSM/UMTS
 - position via GPS
 - local ad-hoc network with vehicles close-by to prevent accidents, guidance system, redundancy
 - vehicle data (e.g., from buses, high-speed trains) can be transmitted in advance for maintenance

• Emergencies

- early transmission of patient data to the hospital, current status, first diagnosis
- replacement of a fixed infrastructure in case of earthquakes, hurricanes, fire etc.
- crisis, war, ...

1/8/2013

Mobile and wireless services – Always Best Connected

UMTS, GSM

115 kbit/s

GSM/GPRS 53 kbit/s

GSM/EDGE 384 kbit/s, DSL/WLAN 3 Mbit/s

> GSM 115 kbit/s, WLAN 11 Mbit/s

UMTS, GSM 384 kbit/s

LAN

WLAN

100 Mbit/s

54 Mbit/s

1/8/2013

CSE 4215/5431, Winter 2013

UMTS

2 Mbit/s

Applications II

- Traveling salesmen
 - direct access to customer files stored in a central location
 - consistent databases for all agents
 - mobile office
- Replacement of fixed networks
 - remote sensors, e.g., weather, earth activities
 - flexibility for trade shows
 - LANs in historic buildings
- Entertainment, education, ...
 - outdoor Internet access
 - intelligent travel guide with up-to-date location dependent information
 - ad-hoc networks for multi user games

Location dependent services

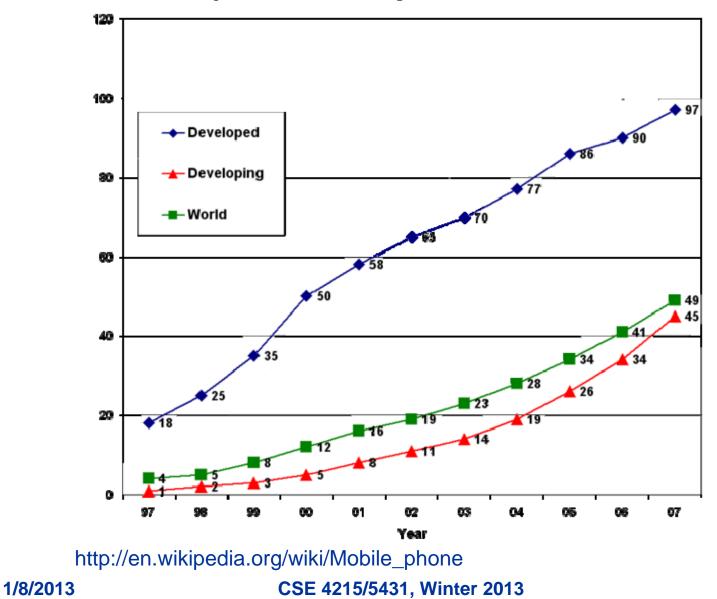
- Location aware services
 - what services, e.g., printer, fax, phone, server etc. exist in the local environment
- Follow-on services
 - automatic call-forwarding, transmission of the actual workspace to the current location
- Information services
 - "push": e.g., current special offers in the supermarket
 - "pull": e.g., where is the Black Forest Cheese Cake?
- Support services
 - caches, intermediate results, state information etc. "follow" the mobile device through the fixed network
- Privacy
 - who should gain knowledge about the location

Mobile devices

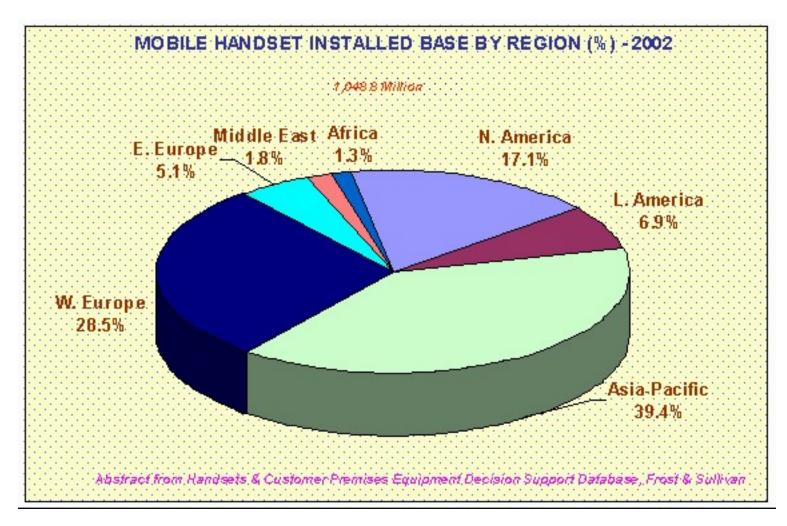
Tablets

Pager

graphical displays receive only character recognition • tiny displays simplified WWW • simple text messages Sensors, embedded controllers Smartphone tiny keyboard Mobile phones • simple versions voice, data of standard applications simple graphical displays performance


No clear separation between device types possible (e.g. smart phones, embedded PCs, ...) CSE 4215/5431, Winter 2013 1/8/2013

Laptop/Notebook


- fully functional
- standard applications

Worldwide cellular subscriber growth Mobile phone subscribers per 100 inhabitants 1997-2007

Cellular subscribers by region

From http://www.frost.com/prod/servlet/cpo/28323426

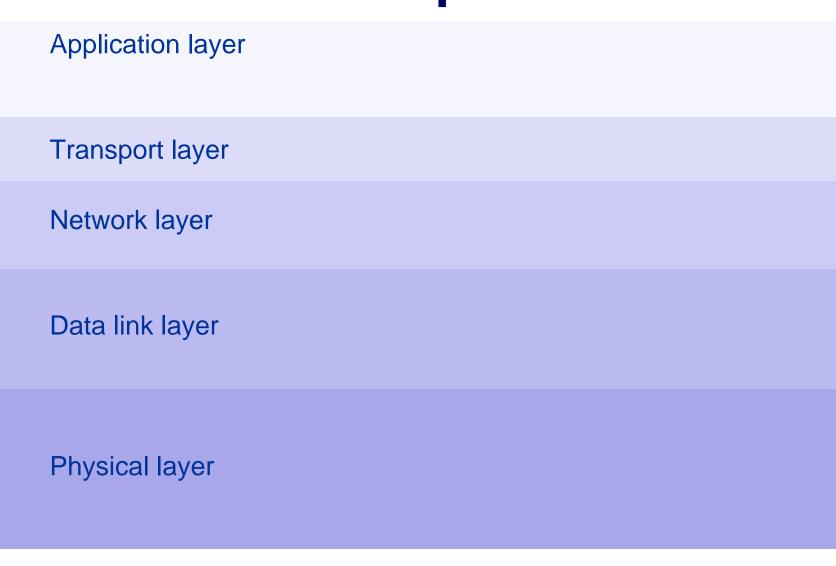
Mobile communications

Bottomline: Mobile communications cannot be ignored!

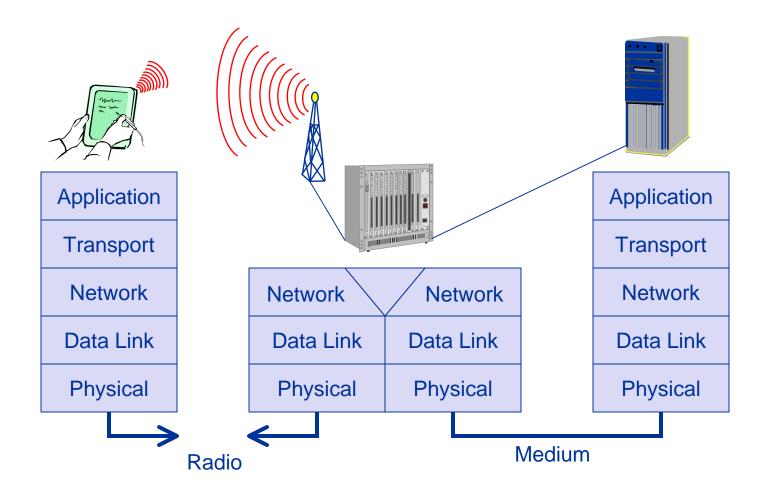
Basic questions

- How is it similar to static networks?
- How is it different from static networks?

Similarities

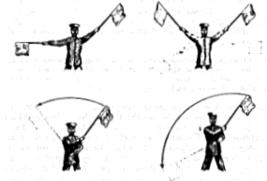

- Same basic architecture
- Layer functionality must be similar to and compatible with those for static networks
- Interoperability (with TCP/IP)

Differences


Mobility introduces difficulties

- Power limitations
- Bandwidth/noise issues
- Topology management
- Routing
- Localization
- Medium access control
- Deployment scheme
- Security
- Computational limitations

Quick recap of TCP/IP


Simple reference model used here

1/8/2013

Early history of wireless communication

- Many people in history used light for communication
 - heliographs, flags ("semaphore"), ...
 - 150 BC smoke signals for communication; (Polybius, Greece)
 - 1794, optical telegraph, Claude Chappe
- Here electromagnetic waves are of special importance:

- 1831 Faraday demonstrates electromagnetic induction
- J. Maxwell (1831-79): theory of electromagnetic Fields, wave equations (1864)
- H. Hertz (1857-94): demonstrates with an experiment the wave character of electrical transmission through space (1888, in Karlsruhe, Germany)

History of wireless communication I

- 1896 Guglielmo Marconi
 - first demonstration of wireless telegraphy (digital!)
 - long wave transmission, high transmission power necessary (> 200kW)
- 1907 Commercial transatlantic connections
 - huge base stations(30 100m high antennas)

- 1915 Wireless voice transmission New York San Francisco
- 1920 Discovery of short waves by Marconi
 - reflection at the ionosphere
 - smaller sender and receiver, possible due to the invention of the vacuum tube (1906, Lee DeForest and Robert von Lieben)
- 1926 Train-phone on the line Hamburg Berlin
- wires parallel to the railroad track

History of wireless communication II

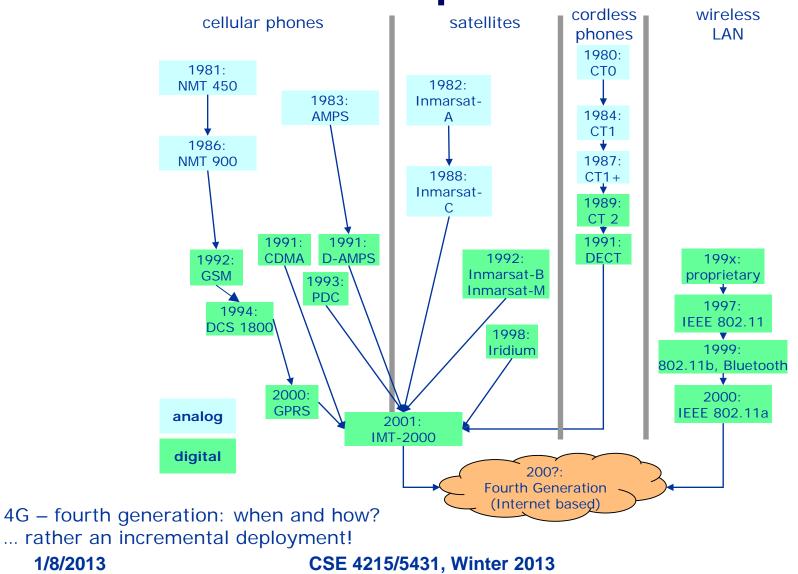
- 1928 many TV broadcast trials (across Atlantic, color TV, news)
- 1933 Frequency modulation (E. H. Armstrong)
- 1958 A-Netz in Germany
 - analog, 160MHz, connection setup only from the mobile station, no handover, 80% coverage, 1971 11000 customers
- 1972 B-Netz in Germany
 - analog, 160MHz, connection setup from the fixed network too (but location of the mobile station has to be known)
 - available also in A, NL and LUX, 1979 13000 customers in D
- 1979 NMT at 450MHz (Scandinavian countries)
- 1982 Start of GSM-specification
 - goal: pan-European digital mobile phone system with roaming
- 1983 Start of the American AMPS (Advanced Mobile Phone System, analog)
- 1984 CT-1 standard (Europe) for cordless telephones

History of wireless communication III

- 1986 C-Netz in Germany
 - analog voice transmission, 450MHz, hand-over possible, digital signaling, automatic location of mobile device
 - was in use until 2000, services: FAX, modem, X.25, e-mail, 98% coverage
- 1991 Specification of DECT
 - Digital European Cordless Telephone (today: Digital Enhanced Cordless Telecommunications)
 - 1880-1900MHz, ~100-500m range, 120 duplex channels, 1.2Mbit/s data transmission, voice encryption, authentication, up to several 10000 user/km², used in more than 50 countries
- 1992 Start of GSM
 - in D as D1 and D2, fully digital, 900MHz, 124 channels
 - automatic location, hand-over, cellular
 - roaming in Europe now worldwide in more than 200 countries
 - services: data with 9.6kbit/s, FAX, voice, ...

History of wireless communication IV

- 1994 E-Netz in Germany
 - GSM with 1800MHz, smaller cells
 - as Eplus in D (1997 98% coverage of the population)
- 1996 HiperLAN (High Performance Radio Local Area Network)
 - ETSI, standardization of type 1: 5.15 5.30GHz, 23.5Mbit/s
 - recommendations for type 2 and 3 (both 5GHz) and 4 (17GHz) as wireless ATM-networks (up to 155Mbit/s)
- 1997 Wireless LAN IEEE802.11
 - IEEE standard, 2.4 2.5GHz and infrared, 2Mbit/s
 - already many (proprietary) products available in the beginning
- 1998 Specification of GSM successors
 - for UMTS (Universal Mobile Telecommunications System) as European proposals for IMT-2000
 - Iridium
 - 66 satellites (+6 spare), 1.6GHz to the mobile phone


History of wireless communication V

- 1999 Standardization of additional wireless LANs
 - IEEE standard 802.11b, 2.4-2.5GHz, 11Mbit/s
 - Bluetooth for piconets, 2.4GHz, <1Mbit/s
 - decision about IMT-2000
 - several "members" of a "family": UMTS, cdma2000, DECT, ...
 - Start of WAP (Wireless Application Protocol) and i-mode
 - first step towards a unified Internet/mobile communication system
 - access to many services via the mobile phone
- 2000 GSM with higher data rates
 - HSCSD offers up to 57,6kbit/s
 - first GPRS trials with up to 50 kbit/s (packet oriented!)
 - UMTS auctions/beauty contests
 - Hype followed by disillusionment (50 B\$ paid in Germany for 6 licenses!)
 - Iridium goes bankrupt
- 2001 Start of 3G systems
 - Cdma2000 in Korea, UMTS tests in Europe, Foma (almost UMTS) in Japan

History of wireless communication VI

- 2002
 - WLAN hot-spots start to spread
- 2003
 - UMTS starts in Germany
 - Start of DVB-T in Germany replacing analog TV
- 2005
 - WiMax starts as DSL alternative (not mobile)
 - first ZigBee products
- 2006
 - HSDPA starts in Germany as fast UMTS download version offering > 3 Mbit/s
 - WLAN draft for 250 Mbit/s (802.11n) using MIMO
 - WPA2 mandatory for Wi-Fi WLAN devices
- 2007
 - over 3.3 billion subscribers for mobile phones (NOT 3 bn people!)
- 2008
 - "real" Internet widely available on mobile phones (standard browsers, decent data rates)
 - 7.2 Mbit/s HSDPA, 1.4 Mbit/s HSUPA available in Germany, more than 100 operators support HSPA worldwide, first LTE tests (>100 Mbit/s)
- 2009 the story continues with netbooks, iphones, VoIPoWLAN...

Wireless systems: overview of the development

