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Next
Towards undecidability: 

• The Halting Problem

• Countable and uncountable infinities

• Diagonalization arguments
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The Halting Problem
The existence of the universal TM U shows that 
ATM = {M,w | M is a TM that accepts w }

is TM-recognizable, but can we also decide it?

The problem lies with the cases when M does 
not halt on w.  In short: the halting problem.

We will see that this is an insurmountable 
problem: in general one cannot decide if a TM
will halt on w or not, hence ATM is undecidable.
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Counting arguments
• We need tools to reason about 

undecidability.
• The basic argument is that there are 

more languages than Turing machines 
and so there are languages than Turing 
machines. Thus some languages 
cannot be decidable
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Baby steps
• What is counting?

– Labeling with integers
– Correspondence with integers

• Let us review basic properties of functions
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Mappings and Functions
The function F:AB
maps one set A to 
another set B:

A B
F

F is one-to-one (injective) if every xA has a 
unique image F(x): If F(x)=F(y) then x=y.

F is onto (surjective) if every zB is ‘hit’ by F:
If zB then there is an xA such that F(x)=z.

F is a correspondence (bijection) between A 
and B if it is both one-to-one and onto.
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Cardinality 

A set S has k elements if and only if there exists
a bijection between S and {1,2,…,k}.

S and {1,…,k} have the same cardinality.

If there is a surjection possible from {1,…,n} 
to S, then n  |S|.

We can generalize this way of comparing the 
sizes of sets to infinite ones.
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How Many Languages?
For ={0,1}, there are 2k words of length k.
Hence, there are        languages L  k.

Proof: L has two options for every word k;
L can be represented by a string .

That’s a lot, but finite.

There are infinitely many languages  *.
But we can say more than that…

Georg Cantor defined a way of comparing infinities.
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Countably Infinite Sets

A set S is countable if there exists a surjective
function F:  S 
“The set S has not more elements than .”

A set S is infinite if there exists a surjective
function F:S.
“The set  has no more elements than S.”

A set S is countably infinite if there exists a 
bijective function F:  S.
“The sets  and S are of equal size.”
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Counterintuitive facts
• Cardinality of even integers

– Bijection i  2i
– A proper subset of N has the same 

cardinality as N !
– Same holds for odd integers

• What about pairs of natural numbers?
– Bijection from N to N x N !!
– Cantor’s idea: count by diagonals
– Implies set of rational numbers is countable 
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Counterintuitive facts - 2

• Note that the ordering of Q is not in 
increasing order or decreasing order of 
value.

• In proofs, you CANNOT assume that an 
ordering has to be in increasing or 
decreasing order.

• So cannot use ideas like “between any 
two real numbers x, y, there exists a real 
number 0.5(x+y)” to prove uncountability.
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More Countably Infinite Sets

One can make bijections between  and
1. {a}*:  i  ai

2. Integers (Z): 
1 2 3   4 5 6   7 8 9   10  11 
0  +1  -1  +2  -2  +3  -3  +4  -4  +5  -5
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Countable sets in language theory
• * is countable – finitely many strings of 

length k. Order them lexicographically.
• Set of all Turing machines countable – every 

TM can be encoded as a string over some .
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Summary
A set S is countably infinite if there exists a bijection
between {0,1,2,…} and S.

Intuitively: A set S is countable, if you can make a 
List (numbering) s1,s2,… of all the elements of S.

The sets Q, {0,1}* are countably infinite.

Example for {0,1}*: the lexicographical ordering:
{0,1}* = {,0,1,00,01,10,11,000,…}

Q: Are there bigger sets?
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Next
•Chapter 4.2:

• Uncountable Set of Languages

• Unrecognizable Languages

• Halting Problem is Undecidable

• Non-Halting is not TM-Recognizable
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Uncountable Sets

There are infinite sets that are not countable.
Typical examples are R, P (N) and P ({0,1}*) 

We prove this by a diagonalization argument.
In short, if S is countable, then you can make a
list s1,s2,… of all elements of S.

Diagonalization shows that given such a list,
there will always be an element x of S that
does not occur in s1,s2,…
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Uncountability of P (N)
The set P (N) contains all the subsets of  {1,2,…}.
Each subset X N can be identified by an infinite
string of bits x1x2... such that xj=1 iff jX.

There is a bijection between P (N) and {0,1}N.

Proof by contradiction: Assume P (N) countable.  
Hence there must exist a surjection F from N to 
the set of infinite bit strings. 
“There is a list of all infinite bit strings.”



3/27/2013 CSE 2001, Winter 2013 18

Diagonalization

Try to list all possible infinite bit strings:











010103
000012
111111
000000

Look at the bit string on the diagonal of
this table: 0101… The negation of this
string (“1010…”) does not appear in the table.
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No Surjection N  {0,1}N

Let F be a function N  {0,1}N.
F(1),F(2),… are all infinite bit strings.

Define the infinite string Y=Y1Y2… by
Yj = NOT(j-th bit of F(j))

On the one hand Y {0,1}N, but on the other 
hand: for every j N we know that F(j)  Y 
because F(j) and Y differ in the j-th bit.

F cannot be a surjection: {0,1}N is uncountable.
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Generalization
• We proved that P ({0,1}*) is uncountably 

infinite.
• Can be generalized to P (*) for any finite .
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R is uncountable
• Similar diagonalization proof. We will 

prove [0,1) uncountable
• Let F be a function N  R 

F(1),F(2),… are all infinite digit strings 
(padded with zeroes if required).

• Define the infinite string of digits Y=Y1Y2… by
Yj = F(i)i + 1  if F(i)i < 8

7                      if F(i)i  8

Q: Where does this proof fail on N?
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Other infinities
• We proved 2N uncountable. We can show 

that this set has the same cardinality as   
P (N) and R.

• What if we take P (R)?
• Can we build bigger and bigger infinities this 

way?
• Euler: Continuum hypothesis – YES!
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Uncountability

We just showed that there it is impossible to
have a surjection from N to the set {0,1}N.

What does this have to do with Turing 
machine computability?
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Counting TMs

Observation: Every TM has a finite description;
there is only a countable number of different TMs.
(A description M can consist of a finite string
of bits, and the set {0,1}* is countable.)

Our definition of Turing recognizable languages
is a mapping between the set of TMs {M1,M2 ,…} 
and the set of languages {L(M1),L(M2),…}P (*).

Question: How many languages are there?
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Counting Languages

There are uncountably many different languages 
over the alphabet ={0,1}    (the languages L{0,1}*).
With the lexicographical ordering ,0,1,00,01,… of *, 
every L coincides with an infinite bit string via its 
characteristic sequence L.

Example for L={0,00,01,000,001,…} with L= 0101100…







1110011010
XXXXXXL

0100010001110010010*

L


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Counting TMs and Languages
There is a bijection between the set of languages
over the alphabet ={0,1} and the uncountable
set of infinite bit strings {0,1}N.
 There are uncountable many different

languages L{0,1}*.
 Hence there is no surjection possible from the

countable set of TMs to the set of languages.
Specifically, the mapping L(M) is not surjective.

Conclusion: There are languages that are not
Turing-recognizable. (A lot of them.)
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Is This Really Interesting?

We now know that there are languages that are 
not Turing recognizable, but we do not know 
what kind of languages are non-TM-
recognizable.

Are there interesting languages for which we 
can prove that there is no Turing machine that 
recognizes it?


