CSE 2001: Introduction to Theory of Computation

Winter 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043

Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

Some of these slides are adapted from Wim van Dam's slides (www.cs.berkeley.edu/~vandam/CS172/ retrieved earlier)

Next

Towards undecidability:

- The Halting Problem
- Countable and uncountable infinities
- Diagonalization arguments

The Halting Problem

The existence of the universal TM U shows that $A_{TM} = \{<M,w> \mid M \text{ is a TM that accepts } w \}$ is TM-recognizable, but can we also *decide* it?

The problem lies with the cases when M does not halt on w. In short: the halting problem.

We will see that this is an insurmountable problem: in general one cannot decide if a TM will halt on w or not, hence A_{TM} is undecidable.

Counting arguments

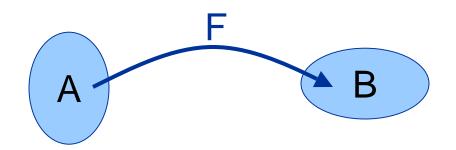
- We need tools to reason about undecidability.
- The basic argument is that there are more languages than Turing machines and so there are languages than Turing machines. Thus some languages cannot be decidable

Baby steps

- What is counting?
 - Labeling with integers
 - Correspondence with integers
- Let us review basic properties of functions

Mappings and Functions

The function F:A→B maps one set A to another set B:



F is <u>one-to-one</u> (injective) if every $x \in A$ has a unique image F(x): If F(x)=F(y) then x=y.

F is <u>onto</u> (surjective) if every $z \in B$ is 'hit' by F: If $z \in B$ then there is an $x \in A$ such that F(x)=z.

F is a <u>correspondence</u> (bijection) between A and B if it is both one-to-one and onto.

Cardinality

A set S has k elements if and only if there exists a bijection between S and {1,2,...,k}.

S and {1,...,k} have the same <u>cardinality</u>.

If there is a surjection possible from $\{1,...,n\}$ to S, then $n \ge |S|$.

We can generalize this way of comparing the sizes of sets to infinite ones.

How Many Languages?

For $\Sigma = \{0,1\}$, there are 2^k words of length k. Hence, there are $2^{(2^k)}$ languages $L \subseteq \Sigma^k$.

Proof: L has two options for every word $\in \Sigma^k$; L can be represented by a string $\in \{0,1\}^{(2^k)}$.

That's a lot, but finite.

There are infinitely many languages $\subseteq \Sigma^*$. But we can say more than that...

Georg Cantor defined a way of comparing infinities.

Countably Infinite Sets

A set S is <u>infinite</u> if there exists a surjective function $F:S \rightarrow N$.

"The set N has no more elements than S."

A set S is <u>countable</u> if there exists a surjective function $F: N \rightarrow S$

"The set S has not more elements than \$."

A set S is <u>countably infinite</u> if there exists a bijective function F: $N \rightarrow S$.

"The sets N and S are of equal size."

Counterintuitive facts

- Cardinality of even integers
 - Bijection i ↔ 2i
 - A proper subset of N has the same cardinality as N!
 - Same holds for odd integers
- What about pairs of natural numbers?
 - Bijection from N to N x N !!
 - Cantor's idea: count by diagonals
 - Implies set of rational numbers is countable

Counterintuitive facts - 2

- Note that the ordering of Q is not in increasing order or decreasing order of value.
- In proofs, you CANNOT assume that an ordering has to be in increasing or decreasing order.
- So cannot use ideas like "between any two real numbers x, y, there exists a real number 0.5(x+y)" to prove uncountability.

More Countably Infinite Sets

One can make bijections between N and

1.
$$\{a\}^*$$
: $i \leftrightarrow a^i$

2. Integers (Z):

$$0 + 1 - 1 + 2 - 2 + 3 - 3 + 4 - 4 + 5 - 5$$

Countable sets in language theory

- Σ^* is countable finitely many strings of length k. Order them lexicographically.
- Set of all Turing machines countable every TM can be encoded as a string over some Σ .

Summary

A set S is <u>countably infinite</u> if there exists a bijection between {0,1,2,...} and S.

Intuitively: A set S is countable, if you can make a List (numbering) $s_1, s_2, ...$ of all the elements of S.

The sets Q, {0,1}* are countably infinite.

Example for $\{0,1\}^*$: the lexicographical ordering: $\{0,1\}^* = \{\epsilon,0,1,00,01,10,11,000,...\}$

Q: Are there bigger sets?

Next

- •Chapter 4.2:
 - Uncountable Set of Languages
 - Unrecognizable Languages
 - Halting Problem is Undecidable
 - Non-Halting is not TM-Recognizable

Uncountable Sets

There are infinite sets that are not countable. Typical examples are R, $\mathcal{P}(N)$ and $\mathcal{P}(\{0,1\}^*)$

We prove this by a <u>diagonalization argument</u>. In short, if S is countable, then you can make a list $s_1, s_2,...$ of all elements of S.

Diagonalization shows that given such a list, there will always be an element x of S that does not occur in $s_1, s_2, ...$

Uncountability of $\mathcal{P}(N)$

The set $\mathcal{P}(N)$ contains all the subsets of $\{1,2,\ldots\}$. Each subset $X\subseteq N$ can be identified by an infinite string of bits $x_1x_2...$ such that $x_i=1$ iff $j\in X$.

There is a bijection between $\mathcal{P}(N)$ and $\{0,1\}^N$.

Proof by contradiction: Assume $\mathcal{P}(N)$ countable. Hence there must exist a surjection F from N to the set of infinite bit strings.

"There is a list of all infinite bit strings."

Diagonalization

Try to list all possible infinite bit strings:

0	0	0	0	0	0	• • •
1	1	1	1	1	1	• • •
2	1	0	0	0	0	• • •
	0	1	0	1	0	• • •
•					X	•

Look at the bit string on the diagonal of this table: 0101... The negation of this string ("1010...") does not appear in the table.

No Surjection $N \rightarrow \{0,1\}^N$

Let F be a function $N \rightarrow \{0,1\}^N$. F(1),F(2),... are all infinite bit strings.

Define the infinite string $Y=Y_1Y_2...$ by $Y_j = NOT(j-th bit of F(j))$

On the one hand $Y \in \{0,1\}^N$, but on the other hand: for every $j \in N$ we know that $F(j) \neq Y$ because F(j) and Y differ in the j-th bit.

F cannot be a surjection: {0,1}^N is uncountable.

Generalization

- We proved that $\mathcal{P}(\{0,1\}^*)$ is uncountably infinite.
- Can be generalized to $\mathcal{P}(\Sigma^*)$ for any finite Σ .

R is uncountable

- Similar diagonalization proof. We will prove [0,1) uncountable
- Let F be a function N → R
 F(1),F(2),... are all infinite digit strings
 (padded with zeroes if required).
- Define the infinite string of digits Y=Y₁Y₂... by Y_j = F(i)_i + 1 if F(i)_i < 8
 7 if F(i)_i ≥ 8

Q: Where does this proof fail on N?

Other infinities

- We proved 2^N uncountable. We can show that this set has the same cardinality as $\mathcal{P}(N)$ and R.
- What if we take $\mathcal{P}(R)$?
- Can we build bigger and bigger infinities this way?
- Euler: Continuum hypothesis YES!

Uncountability

We just showed that there it is impossible to have a surjection from N to the set $\{0,1\}^N$.

What does this have to do with Turing machine computability?

Counting TMs

Observation: Every TM has a finite description; there is only a countable number of different TMs. (A description <M> can consist of a finite string of bits, and the set {0,1}* is countable.)

Our definition of Turing recognizable languages is a mapping between the set of TMs $\{M_1, M_2, ...\}$ and the set of languages $\{L(M_1), L(M_2), ...\} \subseteq \mathcal{P}(\Sigma^*)$.

Question: How many languages are there?

Counting Languages

There are uncountably many different languages over the alphabet Σ ={0,1} (the languages L \subseteq {0,1}*). With the lexicographical ordering ε ,0,1,00,01,... of Σ *, every L coincides with an infinite bit string via its characteristic sequence χ_L .

Example for L= $\{0,00,01,000,001,...\}$ with χ_L = 0101100...

Counting TMs and Languages

There is a bijection between the set of languages over the alphabet Σ ={0,1} and the uncountable set of infinite bit strings {0,1}^N.

- ➤ There are uncountable many different languages L⊆{0,1}*.
- ➤ Hence there is no surjection possible from the countable set of TMs to the set of languages. Specifically, the mapping L(M) is not surjective.

<u>Conclusion</u>: There are languages that are not Turing-recognizable. (A lot of them.)

Is This Really Interesting?

We now know that there are languages that are not Turing recognizable, but we do not know what kind of languages are non-TM-recognizable.

Are there interesting languages for which we can prove that there is no Turing machine that recognizes it?