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Robustness
Just like k-tape TMs, nondeterministic Turing 
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent 
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only 
if some nondeterministic TM recognizes it.”

The Turing machine model is extremely robust.
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Computing with non-deterministic 
TMs

C1

C6
C5

C4C3
C2

Evolution of the n.d. TM
represented by a tree 
of configurations (rather
than a single path).

Μ “reject”

“accept”

If there is (at least)
one accepting leave,
then the TM accepts.

t=1

t=2

t=3
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Simulating Non-deterministic 
TMs with Deterministic Ones

We want to search every path down the tree
for accepting configurations.

Bad idea: “depth first”. This approach can get
lost in never-halting paths.

Good idea: “breadth first”. For time step 1,2,… 
we list all possible configurations of the non-
deterministic TM.  The simulating TM accepts 
when it lists an accepting configuration. 
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Breadth First

Let b be the maximum number
of children of a node.

C1

C6
C5

C4C3
C2

Μ “reject”

“accept”

t=1

t=2

t=3
Any node in the tree can
be uniquely identified  by
a string ∈ {1,…,b}*.

Example: location of the
rejecting configuration is (3,1).

With the lexicographical listing ε, (1), (2),…, (b), (1,1),
(1,2),…,(1,b), (2,1),… et cetera, we cover all nodes. 
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Proof of Theorem 3.10
Let M be the non-deterministic TM on input w.

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w.

1) T1 contains w, T2 and T3 are empty
2) Simulate M on w via the deterministic path 

to the node of tape 3. If the node accepts,
“accept”, otherwise go to 3)

3) Increase the node value on T3; go to 2)
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Robustness
Just like k-tape TMs, nondeterministic Turing 
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent 
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only 
if some nondeterministic TM recognizes it.”

Let’s consider other ways of computing a language…
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Enumerating Languages
Thus far, the Turing machines were ‘recognizers’.

When a TM E generates the words of a language,
E is an enumerator (cf. “recursively enumerable”).

A Turing machine E, enumerates the language L
if it prints an (infinite) list of strings on the tape
such that all elements of L will appear on the tape,
and all strings on the tape are elements of L.
(E starts on an empty input tape.  The strings 
can appear in any order; repetition is allowed.)
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Enumerating = Recognizing
Theorem 3.13: A language L is TM-recognizable
if and only if L is enumerable. 

Proof: (“if”) Take the enumerator E and input w.
Run E and check the strings it generates.
If w is produced, then “accept” and stop,
otherwise let E continue.
(“only if”) Take the recognizer M. Let s1,s2,…
be a listing of all strings ∈Σ*⊇L. 
For j=1,2,… run M on s1,…,sj for j time-steps. 
If M accepts an s, print s.  Keep increasing j.
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Other Computational Models

We can consider many other ‘reasonable’ 
models of computation: DNA computing,
neural networks, quantum computing… 

Experience teaches us that every such model 
can be simulated by a Turing machine.

Church-Turing Thesis:
The intuitive notion of computing and algorithms
is captured by the Turing machine model.
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Importance of the 
Church-Turing Thesis

The Church-Turing thesis marks the end of 
a long sequence of developments that concern
the notions of “way-of-calculating”, “procedure”, 
“solving”, “algorithm”.

For a long time, this was an implicit notion
that defied proper analysis. 

Goes back to Euclid’s GCD algorithm (300 BC).
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“Algorithm”

After Abū ‘Abd Allāh Muhammed 
ibn Mūsā al-Khwārizmī (770 – 840)

His “Al-Khwarizmi on the Hindu Art of 
Reckoning” describes the decimal system
(with zero), and gives methods for calculating 
square roots and other expressions.

“Algebra” is named after an earlier book.
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Hilbert’s 10th Problem

In 1900, David Hilbert (1862–1943) proposed
his Mathematical Problems (23 of them).

The Hilbert’s 10th problem is: Determination 
of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of
unknown quantities and with integer coefficients: To 
devise a process according to which it can be 
determined by a finite number of operations whether 
the equation is solvable in integers.
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Diophantine Equations

Let P(x1,…,xk) be a polynomial in k variables
with integral coefficients.  Does P have an 
integral root (x1,…,xk)∈Zk ?

Example: P(x,y,z) = 6x3yz + 3xy2–x3–10 
has integral root (x,y,z) = (5,3,0).

Other example: P(x,y) = 21x2–81xy+1 
does not have an integral root.
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(Un)solving Hilbert’s 10th
Hilbert’s “…a process according to which it can 
be determined by a finite number of operations…”
needed to be defined in a proper way.

This was done in 1936 by Church and Turing.

The impossibility of such a process for 
exponential equations was shown by Davis, 
Putnam and Robinson.

Matijasevič proved that Hilbert’s 10th problem 
is unsolvable in 1970.


