
3/20/2013 CSE 2001, Winter 2013 33

Robustness
Just like k-tape TMs, nondeterministic Turing
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only
if some nondeterministic TM recognizes it.”

The Turing machine model is extremely robust.

3/20/2013 CSE 2001, Winter 2013 34

Computing with non-deterministic
TMs

C1

C6
C5

C4C3
C2

Evolution of the n.d. TM
represented by a tree
of configurations (rather
than a single path).

Μ “reject”

“accept”

If there is (at least)
one accepting leave,
then the TM accepts.

t=1

t=2

t=3

3/20/2013 CSE 2001, Winter 2013 35

Simulating Non-deterministic
TMs with Deterministic Ones

We want to search every path down the tree
for accepting configurations.

Bad idea: “depth first”. This approach can get
lost in never-halting paths.

Good idea: “breadth first”. For time step 1,2,…
we list all possible configurations of the non-
deterministic TM. The simulating TM accepts
when it lists an accepting configuration.

3/20/2013 CSE 2001, Winter 2013 36

Breadth First

Let b be the maximum number
of children of a node.

C1

C6
C5

C4C3
C2

Μ “reject”

“accept”

t=1

t=2

t=3
Any node in the tree can
be uniquely identified by
a string ∈ {1,…,b}*.

Example: location of the
rejecting configuration is (3,1).

With the lexicographical listing ε, (1), (2),…, (b), (1,1),
(1,2),…,(1,b), (2,1),… et cetera, we cover all nodes.

3/20/2013 CSE 2001, Winter 2013 37

Proof of Theorem 3.10
Let M be the non-deterministic TM on input w.

The simulating TM uses three tapes:
T1 contains the input w
T2 the tape content of M on w at a node
T3 describes a node in the tree of M on w.

1) T1 contains w, T2 and T3 are empty
2) Simulate M on w via the deterministic path

to the node of tape 3. If the node accepts,
“accept”, otherwise go to 3)

3) Increase the node value on T3; go to 2)

3/20/2013 CSE 2001, Winter 2013 38

Robustness
Just like k-tape TMs, nondeterministic Turing
machines are not more powerful than simple TMs:

Every nondeterministic TM has an equivalent
3-tape Turing machine, which –in turn– has an
equivalent 1-tape Turing machine.

Hence: “A language L is recognizable if and only
if some nondeterministic TM recognizes it.”

Let’s consider other ways of computing a language…

3/20/2013 CSE 2001, Winter 2013 39

Enumerating Languages
Thus far, the Turing machines were ‘recognizers’.

When a TM E generates the words of a language,
E is an enumerator (cf. “recursively enumerable”).

A Turing machine E, enumerates the language L
if it prints an (infinite) list of strings on the tape
such that all elements of L will appear on the tape,
and all strings on the tape are elements of L.
(E starts on an empty input tape. The strings
can appear in any order; repetition is allowed.)

3/20/2013 CSE 2001, Winter 2013 40

Enumerating = Recognizing
Theorem 3.13: A language L is TM-recognizable
if and only if L is enumerable.

Proof: (“if”) Take the enumerator E and input w.
Run E and check the strings it generates.
If w is produced, then “accept” and stop,
otherwise let E continue.
(“only if”) Take the recognizer M. Let s1,s2,…
be a listing of all strings ∈Σ*⊇L.
For j=1,2,… run M on s1,…,sj for j time-steps.
If M accepts an s, print s. Keep increasing j.

3/20/2013 CSE 2001, Winter 2013 41

Other Computational Models

We can consider many other ‘reasonable’
models of computation: DNA computing,
neural networks, quantum computing…

Experience teaches us that every such model
can be simulated by a Turing machine.

Church-Turing Thesis:
The intuitive notion of computing and algorithms
is captured by the Turing machine model.

3/20/2013 CSE 2001, Winter 2013 42

Importance of the
Church-Turing Thesis

The Church-Turing thesis marks the end of
a long sequence of developments that concern
the notions of “way-of-calculating”, “procedure”,
“solving”, “algorithm”.

For a long time, this was an implicit notion
that defied proper analysis.

Goes back to Euclid’s GCD algorithm (300 BC).

3/20/2013 CSE 2001, Winter 2013 43

“Algorithm”

After Abū ‘Abd Allāh Muhammed
ibn Mūsā al-Khwārizmī (770 – 840)

His “Al-Khwarizmi on the Hindu Art of
Reckoning” describes the decimal system
(with zero), and gives methods for calculating
square roots and other expressions.

“Algebra” is named after an earlier book.

3/20/2013 CSE 2001, Winter 2013 44

Hilbert’s 10th Problem

In 1900, David Hilbert (1862–1943) proposed
his Mathematical Problems (23 of them).

The Hilbert’s 10th problem is: Determination
of the solvability of a Diophantine equation.
Given a Diophantine equation with any number of
unknown quantities and with integer coefficients: To
devise a process according to which it can be
determined by a finite number of operations whether
the equation is solvable in integers.

3/20/2013 CSE 2001, Winter 2013 45

Diophantine Equations

Let P(x1,…,xk) be a polynomial in k variables
with integral coefficients. Does P have an
integral root (x1,…,xk)∈Zk ?

Example: P(x,y,z) = 6x3yz + 3xy2–x3–10
has integral root (x,y,z) = (5,3,0).

Other example: P(x,y) = 21x2–81xy+1
does not have an integral root.

3/20/2013 CSE 2001, Winter 2013 46

(Un)solving Hilbert’s 10th
Hilbert’s “…a process according to which it can
be determined by a finite number of operations…”
needed to be defined in a proper way.

This was done in 1936 by Church and Turing.

The impossibility of such a process for
exponential equations was shown by Davis,
Putnam and Robinson.

Matijasevič proved that Hilbert’s 10th problem
is unsolvable in 1970.

