Characterizing FA languages

Regular expressions

Regular Expressions (Def. 1.52)

Given an alphabet Σ , R is a regular expression if: (INDUCTIVE DEFINITION)

- R = a, with $a \in \Sigma$
- $R = \varepsilon$
- R = ∅
- $R = (R_1 \cup R_2)$, with R_1 and R_2 regular expressions
- $R = (R_1 \bullet R_2)$, with R_1 and R_2 regular expressions
- $R = (R_1^*)$, with R_1 a regular expression

Precedence order: *, •, ∪

Regular Expressions

- Unix 'grep' command: Global Regular Expression and Print
- Lexical Analyzer Generators (part of compilers)
- Both use regular expression to DFA conversion

Examples

•
$$e_1 = a \cup b$$
, $L(e_1) = \{a,b\}$

•
$$e_2 = ab \cup ba$$
, $L(e_2) = \{ab, ba\}$

•
$$e_3 = a^*$$
, $L(e_3) = \{a\}^*$

•
$$e_4 = (a \cup b)^*$$
, $L(e_4) = \{a,b\}^*$

•
$$e_5 = (e_m \cdot e_n), L(e_5) = L(e_m) \cdot L(e_n)$$

•
$$e_6 = a^*b \cup a^*bb$$
,

 $L(e_6) = \{w | w \in \{a,b\}^* \text{ and } w \text{ has } 0 \text{ or more a's followed by 1 or 2 b's} \}$

Characterizing Regular Expressions

 We prove that Regular expressions (RE) and Regular Languages are the same set, i.e.,

RE = RL

Thm 1.54: RL ~ RE

We need to prove both ways:

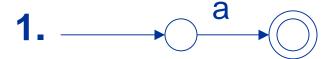
- If a language is described by a regular expression, then it is regular (Lemma 1.55) (We will show we can convert a regular expression R into an NFA M such that L(R)=L(M))
- The second part:
 If a language is regular, then it can be described by a regular expression (Lemma 1.60)

Regular expression to NFA

Claim: If L = L(e) for some RE e, then L = L(M) for some NFA M

Construction: Use inductive definition

- 1. R = a, with $a \in \Sigma$
- 2. $R = \varepsilon$
- 3. $R = \emptyset$
- 4. $R = (R_1 \cup R_2)$, with R_1 and R_2 regular expressions
- 5. $R = (R_1 \cdot R_2)$, with R_1 and R_2 regular expressions
- 6. $R = (R_1^*)$, with R_1 a regular expression



- **2.** —
- 3.

4,5,6: similar to closure of RL under regular operations.

Examples of RE to NFA conv.

```
L = {ab,ba}

L = {ab,abab,ababab,.....}

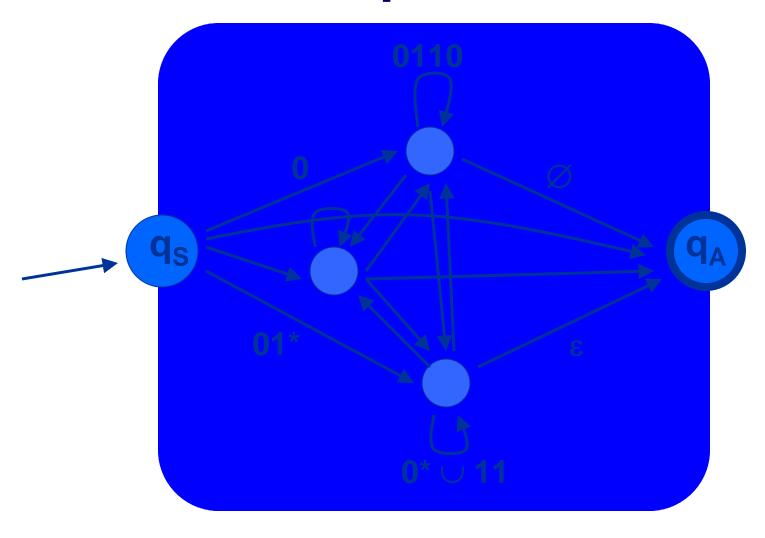
L = {w | w = a^mb^n, m<10, n>10}
```

Back to RL ~ RE

- The second part (Lemma 1.60):
 If a language is regular, then it can be described by a regular expression.
- Proof strategy:
 - regular implies equivalent DFA.
 - convert DFA to GNFA (generalized NFA)
 - convert GNFA to NFA.

GNFA: NFA that have regular expressions as transition labels

Example GNFA



Generalized NFA - defn

Generalized non-deterministic finite automaton $M=(Q, \Sigma, \delta, q_{start}, q_{accept})$ with

- Q finite set of states
- Σ the input alphabet
- q_{start} the start state
- q_{accept} the (unique) accept state
- δ :(Q {q_{accept}})×(Q {q_{start}}) \rightarrow \mathcal{R} is the transition function

(\mathcal{R} is the set of regular expressions over Σ)

(NOTE THE NEW DEFN OF δ)

Characteristics of GNFA's δ

• $\delta:(Q\setminus\{q_{accept}\})\times(Q\setminus\{q_{start}\})\to \mathcal{R}$

The interior Q\{q_{accept},q_{start}} is fully connected by δ From q_{start} only 'outgoing transitions' To q_{accept} only 'ingoing transitions' Impossible q_i \rightarrow q_i transitions are labeled " δ (q_i,q_i) = \varnothing "

Observation: This GNFA recognizes the language L(R)

Proof Idea of Lemma 1.60

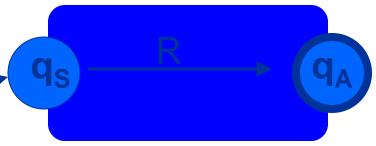
Proof idea (given a DFA M):

Construct an equivalent GNFA M' with k≥2 states

Reduce one-by-one the internal states until k=2

This GNFA will be of the form

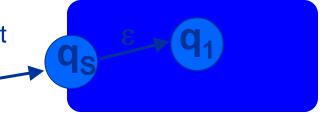
This regular expression R will be such that L(R) = L(M)



DFA M → **Equivalent GNFA M**'

Let M have k states $Q = \{q_1, ..., q_k\}$

- Add two states q_{accept} and q_{start}
- Connect q_{start} to earlier q₁:





- Connect old accepting states to q_{accept}
- Complete missing transitions

- Join multiple transitions:

Remove Internal state of GNFA

If the GNFA M has more than 2 states, 'rip' internal q_{rip} to get equivalent GNFA M' by:

- Removing state q_{rip}: Q'=Q\{q_{rip}}
- Changing the transition function δ by

$$\delta'(q_i,q_j) = \delta(q_i,q_j) \cup (\delta(q_i,q_{rip})(\delta(q_i,q_j))^*\delta(q_{rip},q_j))$$
 for every $q_i \in Q' \setminus \{q_{accept}\}$ and $q_i \in Q' \setminus \{q_{start}\}$

$$= \underbrace{\begin{array}{c} R_4 \cup (R_1 R_2 * R_3) \\ R_4 \cup (R_1 R_2 * R_3) \end{array}}_{36}$$

Proof Lemma 1.60

Let M be DFA with k states

Create equivalent GNFA M' with k+2 states

Reduce in k steps M' to M'' with 2 states

The resulting GNFA describes a single regular expressions R

The regular language L(M) equals the language L(R) of the regular expression R

Proof Lemma 1.60 - continued

- Use induction (on number of states of GNFA) to prove correctness of the conversion procedure.
- Base case: k=2.
- Inductive step: 2 cases q_{rip} is/is not on accepting path.

Recap RL = RE

Let R be a regular expression, then there exists an NFA M such that L(R) = L(M)

The language L(M) of a DFA M is equivalent to a language L(M') of a GNFA = M', which can be converted to a two-state M"

The transition q_{start} — $R \rightarrow q_{accept}$ of M" obeys L(R) = L(M")

Hence: $RE \subset NFA = DFA \subset GNFA \subset RE$