CSE 2001: Introduction to Theory of Computation Winter 2013

Suprakash Datta

datta@cse.yorku.ca

Office: CSEB 3043 Phone: 416-736-2100 ext 77875

Course page: http://www.cse.yorku.ca/course/2001

1/30/2013

Recall: Regular Languages

The language recognized by a finite automaton M is denoted by L(M).

A <u>regular language</u> is a language for which there exists a recognizing finite automaton.

1/30/2013

Terminology: closure

 A set is defined to be closed under an operation if that operation on members of the set always produces a member of the same set. (adapted from wikipedia)

E.g.:

- The integers are closed under addition, multiplication.
- The integers are not closed under division
- Σ^* is closed under concatenation
- A set can be defined by closure -- Σ* is called the (Kleene) closure of Σ under concatenation.

Terminology: Regular Operations

Pages 44-47 (Sipser)

The regular operations are:

- 1. Union
- 2. Concatenation
- 3. Star (Kleene Closure): For a language A,

 $A^* = \{w_1w_2w_3...w_k | \ k \ge 0, \text{ and each } w_i \in A\}$

Closure Properties

- Set of regular languages is closed under
 - -- Complementation
 - Union
 - Concatenation
 - Star (Kleene Closure)

Complement of a regular language

• Swap the accepting and non-accept states of M to get M'.

• The complement of a regular language is regular.

Other closure properties

Union: Can be done with DFA, but using a complicated construction.

Concatenation: We tried and failed

Star: ???

We introduced non-determinism in FA

1/30/2013

Recall: NFA drawing conventions

- Not all transitions are labeled
- Unlabeled transitions are assumed to go to a reject state from which the automaton cannot escape

Closure under regular operations Union (new proof):

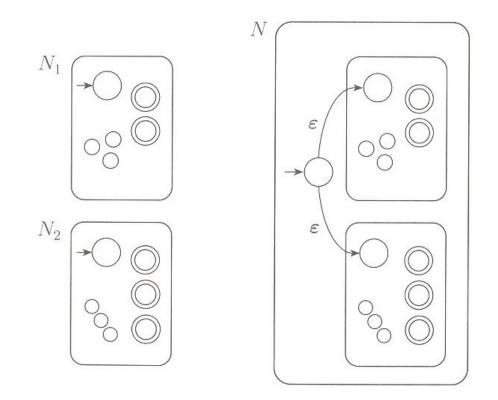
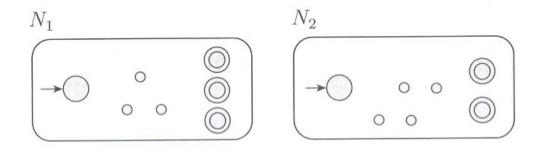


FIGURE 1.46 Construction of an NFA N to recognize $A_1 \cup A_2$

Closure under regular operations Concatenation:



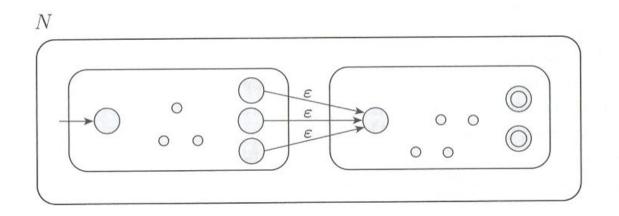


FIGURE **1.48** Construction of N to recognize $A_1 \circ A_2$

1/30/2013

Closure under regular operations Star:

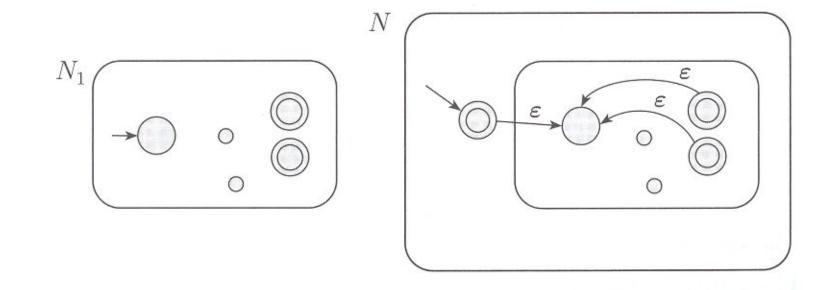


FIGURE 1.50 Construction of N to recognize A^*

Incorrect reasoning about RL

• Since $L_1 = \{w | w=a^n, n \in N\}$,

 $\begin{array}{l} L_2=\{w|\;w=b^n,\,n\in N\} \text{ are regular},\\ \text{therefore } L_1\bullet L_2=\{w|\;w=a^n\,b^n,\,n\in N\} \text{ is}\\ \text{regular} \end{array}$

• If L₁ is a regular language, then L₂ = {w^R | w \in L₁} is regular, and Therefore L₁ • L₂ = {w w^R | w \in L₁} is regular

Are NFA more powerful than DFA?

- NFA can solve every problem that DFA can (DFA are also NFA)
- Can DFA solve every problem that NFA can?

Equivalence of NFA, DFA

- Pages 54-58 (Sipser, 2nd ed)
- We will prove that every NFA is equivalent to a DFA (with upto exponentially more states).
- Non-determinism does not help FA's to recognize more languages!

Epsilon Closure

- Let $N=(Q,\Sigma,\delta,q_0,F)$ be any NFA
- Consider any set $R \subseteq Q$
- E(R) = {q|q can be reached from a state in R by following 0 or more ε-transitions}
- E(R) is the epsilon closure of R under εtransitions

Proving equivalence

For all languages $L \subseteq \Sigma^*$

L = L(N)	iff	L = L(M)
for some		for some
NFA N		DFA M

One direction is easy:

A DFA M is also a NFA N. So N does not have to be `constructed' from M

1/30/2013

Proving equivalence – contd.

The other direction: Construct M from N

- $N = (Q, \Sigma, \delta, q_0, F)$
- Construct $M = (Q', \Sigma, \delta', q'_0, F')$ such that,
 - for any string $w \in \Sigma^*$,
 - w is accepted by N iff w is accepted by M

Special case

- Assume that ϵ is not used in the NFA N.
 - Need to keep track of each subset of N
 - So Q' = $\mathcal{P}(Q)$, q'₀ = {q₀}
 - $\delta'(R,a) = \bigcup(\delta(r,a))$ over all $r \in R, R \in Q'$
 - F' = {R \in Q' | R contains an accept state of N}
- Now let us assume that $\boldsymbol{\epsilon}$ is used.

Construction (general case)

- 1. $Q' = \mathcal{P}(Q)$
- 2. $q'_0 = E(\{q_0\})$
- 3. for all $R \in Q'$ and $a \in \Sigma$ $\delta'(R, a) = \{q \in Q | q \in E(\delta(r,a)) \text{ for some } r \in R\}$
- 4. F' = { R \in Q'| R contains an accept state of N}

Why the construction works

- for any string $w \in \Sigma^*$,
- w is accepted by N iff w is accepted by M
- Can prove using induction on the number of steps of computation...

State minimization

It may be possible to design DFA's without the exponential blowup in the number of states. Consider the NFA and DFA below.

