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Recall: Regular Languages

The language recognized by a finite
automaton M is denoted by L(M).

A regular language is a language 
for which there exists a recognizing
finite automaton.
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Terminology:  closure
• A set is defined to be closed under an 

operation if that operation on members 
of the set always produces a member of 
the same set. (adapted from wikipedia)

E.g.: 
• The integers are closed under addition, multiplication.
• The integers are not closed under division
• Σ* is closed under concatenation

• A set can be defined by closure -- Σ* is called the 
(Kleene) closure of Σ under concatenation.
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Terminology: Regular Operations

Pages 44-47 (Sipser)
The regular operations are:

1. Union
2. Concatenation
3. Star (Kleene Closure): For a language A,

A* = {w1w2w3…wk| k  0, and each wi A}
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Closure Properties
• Set of regular languages is closed 

under
-- Complementation
– Union
– Concatenation
– Star (Kleene Closure)
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Complement of a regular language
• Swap the accepting and non-accept 

states of M to get M’. 

• The complement of a regular language 
is regular.
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Other closure properties
Union: Can be done with DFA, but using a 
complicated construction.

Concatenation: We tried and failed

Star: ???

We introduced non-determinism in FA
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Recall: NFA drawing 
conventions

• Not all transitions are labeled
• Unlabeled transitions are assumed to 

go to a reject state from which the 
automaton cannot escape



1/30/2013 CSE 2001, Winter 2013 9

Closure under regular operations
Union (new proof):
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Closure under regular operations
Concatenation:



1/30/2013 CSE 2001, Winter 2013 11

Closure under regular operations
Star:
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Incorrect reasoning about RL
• Since L1 = {w| w=an, n  N}, 

L2 = {w| w = bn, n  N} are regular,
therefore L1  L2 = {w| w=an bn, n  N} is 
regular

• If L1 is a regular language, then
L2 = {wR| w  L1} is regular, and
Therefore L1  L2 = {w wR | w  L1} is 
regular
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Are NFA more powerful than 
DFA? 

• NFA can solve every problem that DFA 
can (DFA are also NFA)

• Can DFA solve every problem that NFA 
can?
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Equivalence of NFA, DFA
• Pages 54-58 (Sipser, 2nd ed)
• We will prove that every NFA is 

equivalent to a DFA (with upto 
exponentially more states).

• Non-determinism does not help FA’s to 
recognize more languages!
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Epsilon Closure
• Let N=(Q,,,q0,F) be any NFA
• Consider any set R  Q
• E(R) = {q|q can be reached from a state 

in R by following 0 or more -transitions}
• E(R) is the epsilon closure of R under -

transitions



1/30/2013 CSE 2001, Winter 2013 16

Proving equivalence
*languages allFor L

MN

MLLiffNLL

DFA                     NFA   
somefor                      somefor   

)()( 

One direction is easy:

A DFA M is also a NFA N. So N does not 
have to be `constructed’ from M
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Proving equivalence – contd.

• N = (Q,,,q0,F)

• Construct M= (Q’,,’,q’0,F’) such that,
– for any string w  *, 

– w is accepted by N iff w is accepted by M

The other direction: 
Construct M from N



1/30/2013 CSE 2001, Winter 2013 18

Special case
• Assume that  is not used in the NFA N.

- Need to keep track of each subset of N

- So Q’ = P (Q), q’0 = {q0}

- ’(R,a) = ((r,a))  over all r  R, R  Q’
- F’ = {R  Q’| R contains an accept state of N}

• Now let us assume that  is used.
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Construction (general case)

1. Q’ = P(Q)

2. q’0 = E({q0})
3. for all R  Q’ and a Σ

’(R, a) = {q  Q|q  E((r,a)) for some 
rR}

4. F’ = { R  Q’| R contains an accept 
state of N}
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Why the construction works
• for any string w  *, 

• w is accepted by N iff w is accepted by 
M

• Can prove using induction on the 
number of steps of computation…
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State minimization
It may be possible to design DFA’s without the 
exponential blowup in the  number of states. 
Consider the NFA and DFA below. 
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